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Chapter I

INTRODUCTION

In many wave propagation problems, diffraction is considered to be a

second-order effect that diffuses the sharp shadows and focal surfaces

of ray theory. However, if the frequency is low enough so that the

wavelength is comparable to the size of the focusing region, structured

fields of significant levels can be found in classical shadows and

smooth, featureless enhancement can replace sharp, multiple convergences

common at higher frequencies.

This investigation examines strong diffraction in regions of complex

refractive focusing by quantitative analysis of low-frequency wave pro-

pagation. Focal surfaces form because of gradients in the refractive

index such as are common in the atmosphere or the ocean (either for

acoustic or electromagnetic waves) and the frequency range considered is

such that the wavelength is of the same order as the separation of these

surfaces.

Most of the work done on acoustic (or electromagnetic) focusing has

been in simple cases where normal-mode expansion (Ewing, et al., 1957)

is practical or asymptotic methods (Sachs and Silbiger, 1971) can be

used. Long-wavelength focusing in inhomogeneous media has been avoided

for good reason: if the wavelength is comparable to some characteristic

length, the wave nature of the field dominates and neither small nor

large value asymptotic approximations are useful.

--
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While analysis of long-wavelength focusing can be difficult, the phe-

nomenon is not uncommon either in ocean acoustics (Brekhovskhikh and

Lysanov, 1982) or atmospheric acoustics (Thomson, 1983). Furthermore,

when conditions exist for long-wavelength focusing, the effects of per-

turbations on signal fluctuations can be primarily diffractive. The

usual multiple scattering theories assume that the spatial scale of the

perturbations is either much smaller or much larger than a wavelength

(for example, Skudrzyk, 1957 or Flatte, 1979). In the present analysis,

the perturbation scale is of the same order as the acoustic wavelength

and so these limiting cases are not applicable. Since very little anal-

ysis of strong diffraction effects has been done either for determinis-

tic focusing or for perturbation-induced fluctuations, this research

considers both phenomena.

Three critical areas are considered: long-wavelength focusing, sig-

nal fluctuations caused by perturbations in sound speed, and the tran-

sition in fluctuation strength from small amplitude variation to a

large, but limiting, amplitude fluctuation. Normally, the degree of

signal fluctuation is related to the sound-speed variation introduced by

the perturbations. There comes a point, however, when the wavefront has

become so distorted that maximum phase interference is taking place and

increased perturbation only relocates the interference minima and maxi-

ma. This is termed the saturation regime and is the subject of the last

area of consideration.

Deterministic propagation and signal fluctuation are usually consid-

ered separately, but the common theme of strong diffraction suggests

that they be treated together. If unperturbed focusing phenomena were
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the only interest of this investigation, the problem could be cast in

nondimensional terms. Perturbations, however, are peculiar to the par-

ticular physical problem. To treat realistic values of perturbation

scale, strength, and rate of change, a simple physical situation is mod-

eled. Thomson (1983) has shown that strong focusing can occur in the

planetary boundary layer and Brown (1980) and Thomson have provided a

detailed set of meteorological measurements in connection with noise in-

terference studies of the DOE/NASA wind turbine generator near Boone,

North Carolina. This example provides an excellent basis for the pres-

ent studies in long-wavelength focusing and scattering but the methodol-

ogy and many of the results are applicable to strong diffraction prob-

lems in general. Other examples include long-range refractive focusing

of acoustic waves by temperature gradients in the thermosphere, short-

and long-range focusing of sound in the ocean, and ionospheric refrac-

tion of very low frequency electromagnetic radiation.

Several tools were developed specifically for this investigation.

Much of the analysis of the unperturbed field is performed using a nor-

mal-mode solution based on standard theory (for example, Ewing, et al.,

1957); however, because as many as 4000 modes must be calculated in some

instances, a very efficient eigenvalue search procedure was required.

Consequently, a matrix estimation scheme introduced by Cooney, et al.

(1981) for locating bound-state energy levels for the time-independent

Schrodinger equation is adapted to drive an iterative search procedure.

The resulting technique is reliable and fast.

Since the focal surfaces or caustics are closely spaced in terms of

the acoustic wavelength, the usual first-order asymptotic correction to
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ray theory for a simple caustic produces a very poor approximation to

the actual field. This failure prompted the development of a second-or-

der correction that not only handles the multiple focus well but also

provides a criterion for deciding when the second-order scheme should be

used and, also, when the detailed structure of a multiple focus will be

seen.

In order to solve for the perturbed field, a range-dependent solution

must be used. This requirement, along with the desire to investigate

the nature of the field over a broad range of frequencies, motivated the

development of a finite-difference approximation for the time-dependent

acoustic wave equation. By using time-limited pulses, radiation condi-

tions are easily satisfied and the frequency response over more than a

decade is given at every one of the grid points. This particular tech-

nique introduces no artificial dissipation and a modification suggested

by Vichnevetsky and Bowles (1982) makes the numerically-induced disper-

sion controllable and virtually independent of grid orientation. Of the

range-dependent techniques used here, the finite-difference method is

the most accurate so it is used as a baseline against which the other

methods are compared.

Since this finite-difference method has not been applied previously

to time-dependent acoustic propagation problems, some effort is spent to

verify the results. During this validation process, a new solution for

time-dependent wedge diffraction in two dimensions was developed. The

solution is based on the method of normal coordinates outlined by Biot

and Tolstoy (1957) but the usual sum of Legendre functions of non-inte-

ger degree has such poor convergence that even 30 decimal-digit preci-
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sion is inadequate to calculate it except in very special cases. Here,

an integral transformation is introduced and the result is a simple and

rapidly convergent integral of elementary functions instead of a summa-

tion of special functions. This wedge solution is used to evaluate the

finite-difference method for diffraction into a shadow. Several other

tests are performed to evaluate the boundary conditions, source treat-

ment, and refraction treatment.

Some of the more important results from the analysis of the unper-

turbed field concern the underlying field structure. For example, there

is a definite interference structure in the shadow zone. Here, diffrac-

tive spreading from classical rays on the illuminated side of the caus-

tic and the evanescent "tails" of low-order modes combine to produce a

spatially complicated field. In contrast, in the strong enhancement re-

gion, the field is dominated by a single component and so this region is

generally featureless. The transition from a highly structured multiple

focus at high frequency to this smooth enhancement region at low fre-

quency is illustrated by the behavior of the second-order asymptotic

correction to ray theory. Everywhere in the field, the structure is de-

fined by distinct groups of modes and the interference of these groups.

Once perturbations are introduced into the sound speed, the signal

levels at any point fluctuate according to the reaction of the field

components to these perturbations. While the fluctuations resulting

from these perturbations can be calculated easily using the finite-dif-

ference method, this method gives no physical insight into the specific

origins of fluctuation; therefore, an eigenvalue shift method is intro-

duced. Based on range-dependent normal-mode theory, the eigenvalue
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shift technique isolates the major effects of sound-speed perturbation

by identifying the modal components of the field that are most affected

by the perturbations. Coupled with a knowledge of the underlying field

structure, the mechanisms of fluctuation can be determined. The impor-

tant features producing the fluctuations are: the presence of a dominant

mode group identified by a maximum in the eigenvalue shift function; the

phase shift between this dominant component and a component consisting

of the remainder of the mode sum; and, the relative magnitudes of these

two components. By modeling the fluctuations as the interference of two

unequal components with a changing relative phase, results very close to

those of the complete eigenvalue shift solution are obtained with sig-

nificantly less computational effort. This simplified two-component

model gives excellent results in the region of strong enhancement and

weaker but adequate agreement with the finite-difference results in the

shadow zone.

Because this analysis of strong diffraction led to the development of

a number of tools, the actual analysis is not considered until Chapters

V through VII. The first several chapters develop these tools and es-

tablish their validity. If only a general overview of the analysis is

desired, Chapters II through IV can be skipped on the first reading and

referred to as necessary through the equation references in the subseq-

uent chapters.



Chapter II

SOLUTIONS FOR THE FIELD NEAR A COMPLEX FOCUS

A region of complex focusing in which there are several areas of con-

vergence in close proximity is particularly interesting when the fre-

quency is sufficiently low that strong diffraction occurs. In this

chapter, the basic governing equations for acoustics are briefly re-

viewed along with a simple normal-mode method and the usual first-order

asymptotic correction to ray theory. In addition, a second-order asymp-

totic correction that allows calculation in the vicinity of two nearby

caustics is developed. The tools described in this chapter will permit

a detailed investigation of this region before adding the complications

of perturbations.

2.1 Governing Equations

The equations governing the behavior of acoustic disturbances in a

compressible fluid are the mass conservation equation

d~o, d t + o 21

where is the density and -% is the particle velocity; the equation of

motion for an inviscid fluid (neglecting gravitational effects)

-7
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, + (V. ), + p,/p, 0 , (2.2)

where p, is the total pressure; and the isentropic relation for suffi-

ciently slow, reversible compression and rarefaction

= r (2.3)

where c is the sound speed.

If we express the pressure, density and particle velocity each as a

static term plus a small variation (e.g., v, = v. + v) and neglect flow

rotation and second-order terms, we have

p/Ot + /0oC 7. V + v = 0 (2.4)

and

-l t + 7P//o + - = 0 (2.5)

where p is the acoustic pressure and -v is the acoustic particle veloci-

ty.

At this point, we can neglect the bulk flow ' (although this will be

reintroduced in Chapter V), differentiate Equation (2.4) with respect to
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time, take the divergence of Equation (2.5), and subtract the results to

get the usual wave equation for acoustics

v2 p = / (2.6)

It is interesting to note the consequences of this last manipulation.

The extra differentiation of the two coupled equations in p and _ is a

mathematical artifice designed to combine them into a single equation.

However, this new equation has second derivatives in both space and time

whereas only first derivatives appear in the original coupled set. Con-

sequently, discontinuities in first derivatives of physical properties

are not admissible solutions to this new equation while they are per-

fectly acceptable in Equations (2.4) and (2.5).

In the next chapter, we will briefly consider the method of charac-

teristics, a technique applied directly to Equations (2.4) and (2.5)

(or, for that matter, to the nonlinear set of Equations (2.1) and

(2.2)). The concept of propagating discontinuities in the first deriva-

tives of the physical properties is vital to the development of signal

flow in this method. Not only are discontinuous derivatives allowed but

they can grow to be so large that the properties themselves approach

discontinuity and form shock fronts.

Finally, the wave equation driven by a point source at z, is

=/) - ) t2-2 / C (
Vp c p/t' - 9(x) 9~(z - Z.) f(t) ,(2.7)
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where f(t) is the source driver waveform.

2.2 Normal-mode Methods

2.2.1 Simple two-layer model

The mode solution in two-dimensions is derived by taking Fourier

transforms of Equation (2.7) in both time and range and solving the re-

sulting inhomogeneous differential equation by variation of parameters.

The harmonic pressure amplitude is then given by

P( ) i F ) u(z;,) vj (z'C)

P(W i FW(/) exp(irx) , (2.8)

where u and v are solutions of the depth equation

Id/dz + k - y' 0 (2.9)

and u, in general, satisfies the upper boundary condition while v satis-

fies the lower condition. The Wronskian W.Lr of u and v is zero at each

eigenvalue {. (At an eigenvalue, u and v each satisfy both boundary

conditions.) The source and receiver depths are renamed as the upper

point z, and the lower point z<. In the cases to be considered here,

all of the modes are completely trapped and there is no branch line in-

tegral to compute (Brekhovskikh, 1980). Evanescent modes are, however,

important.
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In order to study the wave structure of a focused rield, a two-layer

normal-mode model will be used in which the inverse of sound speed

squared varies linearly with depth in each layer. In this case, the so-

lutions to the depth Equation (2.9) are Airy functions. A typical two-

layer profile is shown in Figure 1. The physical model (i.e., the model

for the sound-speed profile of the atmospheric boundary layer) intro-

duced in Chapter V matches this profile for z/H greater than zero and

less than unity. Above and below this region, the sound speed is con-

stant for the physical model (dashed line) while the profile used in the

normal-mode model (solid line) is extended until the sound speed becomes

infinite. The gradient of the lower layer is very small so the errors

introduced by this mismatch between the physical model and the normal-

mode model are negligible except for ranges well beyond those considered

in this study. The errors introduced by the mismatch in the upper layer

are confined to the region near the upper boundary (z/H equal to unity)

and to ranges shorter than those of interest here. (For the purpose of

validating the finite-difference method, the normal-mode profile is mod-

ified in Chapter IV by terminating the layers at the upper and lower

boundaries with perfectly reflecting boundaries.)

Since the sound speed goes to infinity both above and below the layer

interface, the depth functions u and v must decay exponentially with

distance from the interface. Consequently, the solutions are
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Figure 1. Sound-speed profile for two-layer normal-mode model (solid
line). Profile for physical model is also shown (dashed line).
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u(z) = Ai(ZI)

(2. 10)

v~z) = Ai(Z 2 )

where

z1,2  = Z') (WZ - (.'211

and

(2.12)

g,,, = (1/c 2  -1/c )/(z,, - z<)

The eigenvalue condition is given by setting the Wronskian of u and v to

zero, or

7 Ai(Z,) Ai(Z1 ) - ,Ai(ZI) Ai(Z,) = 0 , (2.13)

where the prime denotes the derivative with respect to Z.

- , mm mm m m mm m 4
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Once the eigenvalues are located for a sufficient number of modes,

the pressure can be calculated from Equation (2.8). The procedure for

computing the Airy functions is discussed in detail by Gabrielson

(1983).

2.2.2 Matrix iteration method

Because of the severe computational load imposed by using many sin-

gle-frequency mode solutions to cover the spectrum of a single time-de-

pendent waveform, a very efficient mode-calculation procedure is essen-

tial. Iterations to locate exact eigenvalues are, by themselves,

intensive, requiring many calculations of Airy functions per mode. Fur-

thermore, finding reasonably accurate estimates to initiate the itera-

tion process can be just as time consuming. The popular WKB method

still requires complicated calculations and can be effectively used

only in single ducts.

Cooney, et al. (1981) have proposed a matrix technique for estimating

the bound states of the one-dimensional Schrodinger equation. This

problem is identical to mode location. By writing simple difference-

equation approximations to the depth Equation (2.9) at many uniformly

spaced depths, a tridiagonal system of simultaneous equations is formed.

Many efficient computer algorithms exist for locating the eigenvalues of

such systems so the estimation problem is rather simple. Even if the

modes are degenerate or nearly so, the matrix technique locates all ei-

genvalues in order. It even locates evanescent-mode eigenvalues with

equal ease.
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Once the estimates have been computed, it is a simple matter in a

single-channel profile to refine these estimates by Newtonian iteration.

The Wronskian derivative is used to correct the original estimates; this

derivative is also used in each term of the mode sum of Equation (2.8).

The entire mode solution done in this way is fast enough to make calcu-

lation of thousands of modes practical.

Some time after this procedure was perfected, Porter and Reiss (1984)

published a similar method for ocean acoustics. They estimate the ei- OV

genvalues in the same way but iterate to refine the estimates by further

matrix operations. If the sound-speed profile can be approximated by

some tractable functional form, Newtonian iteration is considerably

faster. Even for arbitrary profiles, it may be adviseable to use a cor-

rection scheme like that of Guthrie (1974) based on numerical integra-

tion of Equation (2.9) and the eigenfunction orthogonality condition.

2.3 Asymptotic AnDroximations

An asymptotic correction to ray theory is described by Brekhovskikh

(1980) for computing the field in the vicinity of a simple caustic. The

development of this correction is reviewed below in order to provide the

framework for deriving a second-order correction for computing the field

in the vicinity of two nearby caustics. We will follow Brekhovskikh's

treatment for the first-order correction except that we will use an ex-

pression for the field in two dimensions not three. This only involves

dropping a factor of the square root of horizontal distance.

The field can be written as a superposition of elementary waves as

fol lows
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= (e) exp [i(g + yx)] d , (2.14)

where fis a slowly varying amplitude factor, and g is a slowly varying

phase factor. The independent variable in both cases is the horizontal

wave number.

Differentiating the exponent with respect to O, we can locate the

saddle point of the integral

dgl - x , (2.15)

so that at the saddle point

-fx dr (2.16)

Consequently, one way of finding g is to find the relation between x and

r by ray tracing.

A representative diagram of ray range as a function of horizontal

wave number is shown in Figure 2. Where the slope is zero, a caustic

forms: there are two in this diagram. In the top diagram, the region at

some reference wave number ( is approximated by a straight line with

the appropriate slope, or
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Figure 2. Typical piot of range as a function of wave number for rays
near two closely-spaced caustics. Dashed lines show approximate
curves for asymptotic analysis: from top to bottom they represent
simple ray theory, first-order caustic correction, and second-order
caustic correction.



18

x X0 + x -y (2.17)

Here, x" is the derivative of x with respect to at -. Inserting

this equation into Equation (2.16), we can then write an approximation

to the field as

P = e - ixl()-y.)3/2 dr. (2.18)

If we deform the contour by rotating it by -fr/4, the endpoints will co-

incide with the steepest descent path and the integral can be calculated

P 21I/±x0') jcy exp [iCr x. P,/4 ±Q'4] (2.19)

where

Q x - xo)(2/±x.') '/  
. (2.20)

The sign is chosen so that the quantity under the square root is posi-

tive.

It is instructive at this point to define a ray "width" as the range

difference required to produce a rr/2 phase change in the field. This

can be evaluated from the necessary change in Q in Equation (2.19)
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W = , (2.21)

where W is the width parameter. Here, W gives some indication of the

low-frequency spreading of rays. This definition is limited to large

values of xO"; the derivative should really be evaluated from the change

in coordinate perpendicular to the ray path rather than horizontal

range.

A value for fW_ can be calculated from ray theory. For x equal to

x., the field intensity is proportional to

P (2 i/+x') i/) 2.22)

The field can also be calculated by standard ray-tube spreading argu-

ments

p2  CY 1 8 c r [ k y ct ( Cdc/) 1 (2.23)

where c. and c, are the sound speeds at the source and receiver respec-

tively and cw is the vertex speed. Therefore

2(j) = cv [6 .k(cA Cc/ - 1" (cvlcR) 1 ] (2.24)
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This expression for i can be used in expressions that follow to relate

the asymptotic expansions for the field integral to ray theory.

2.3.1 Simple caustic

At a caustic, xo goes to zero and the field, according to Equation

(2.22), becomes infinite. This is, of course, just a symptom of the

breakdown of the approximation in Equation (2.17). In order to approxi-

mate the field near a caustic, we can fit the range curve (Figure 2,

middle diagram) with a parabola at the caustic point. Then

= xo + xi( - Y) /2 (2.25)

Proceeding as before

P = exp(iyx)e ( ) fexpi(x-x.)(Y- ) - x '(r-r.) /6] dr (2.26)

This can be transformed to the Airy integral and solved

P - (2/-x) (" ) exp(iyx.) 21rAi(S) (2.27)

where Ai is the Airy function of the first kind and
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S = (x - xo)(2/-x.') . (2.28)

Here, the real root of the cube root is taken. Now, with Equations

(2.27) and (2.24), we can compute the magnitude of the field near the

caustic.

Let us consider how far two caustics must be separated for them to be

treated as distinct. As seen in Figure 2, there are three rays at any

range between the two caustics so this region is illuminated, not in

shadow, and, from the shape of the parabola in the middle diagram, x."

is negative for this caustic. The zone in between the two caustics cov-

ers ranges less than x., therefore, from Equation (2.28), S is negative

there. (S is also negative for the intervening region when calculated

for the other caustic.) For negative arguments, Ai is oscillatory and

the first half-cycle of these oscillations is complete for S equals -K

If we take this, somewhat arbitrarily, to be the range interval C. need-

ed for the caustic to be distinct, we find from Equation (2.28) that

1/3
CD x'/ 21 1Y .(2.29)
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2.3.2 Multiple caustic

If there are two caustics closer than CD, then a further modification

to this asymptotic theory is required. Instead of fitting one caustic

with a parabola, we can fit the pair with a cubic. This is illustrated

in the bottom diagram of Figure 2. The range equation is

= x 0  + x 0 ' (r-r) + x"'(--o0) 3 /6 , (2.30)

4

and the field integral can be approximated as

P t (24/x,' ) I(K) exp(ir .%) exp[i(Yt-Xt'-t')] dt , (2.31)

where

(x"/24) (4'-r') (2.32)

and the parameters X and Y are given by

X fx (6/x ") '/

(2.33)

Y (x - xo)(24/x.")
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The integral in Equation (2.31) can be integrated numerically if the

contour is first rotated by -ff/8. The convergence is then quite rapid.

A similar integral is used by Pearcey (1946) to evaluate the field

near a cusp which is just a limiting case of two caustics. Pearcey fits

the cubic by point, slope, and first and second derivative at the cusp

while, in the above analysis, the cubic is fit by point and slope at

each caustic. In this way, the caustic locations are preserved; how-

ever, they are forced to be equal in strength.

Incidentally, a plot of the magnitude of the integral in Equation

(2.31) is given by Brekhovskikh (1980). The integral there is slightly

different (all of the signs in the exponent are positive), but the re-

sult is exactly equal to the complex conjugate of that obtained here.

These asymptotic approximations will be compared to a normal-mode so-

lution in Chapter VI where we will see that the multiple caustic approx-

imation does generally predict the correct structure. On the other

hand, the first-order asymptotic correction results are consistently

poor.

The techniques developed in this chapter will be applied in Chapter

VI to the investigation of the field near a complex focus. In that

chapter, both mode theory and asymptotic ray theory will be used to ana-

lyze the structure of the unperturbed field. The next chapter (Chapter

III) will summarize the tools that are used for the analysis of pertur-

bations.



Chapter III

METHODS FOR RANGE-DEPENDENT PERTURBATIONS

3.1 Field Solutions

Once spatial perturbations are introduced into the sound-speed pro-

file, the problem becomes range-dependent and, in the problem considered

in Chapter V, strongly so. To correctly analyze acoustic propagation,

the solution must account for rather large variations in sound speed

over one wavelength. We will first consider single-frequency methods

and then those techniques that yield a direct solution in the time do-

main.

3.1.1 Single-frequency (CW) techniques

Ray tracing programs have been developed for media with range ar well

as depth dependence (Andersen and Kak, 1982); however, they do not fully

account for diffraction even with wave corrections for simple caustics.

Adiabatic-mode formulations (Pierce, 1965) and parabolic-equation solu-

tions (Tappert, 1977) can cope with slow variations of parameters in

range but they are single-frequency models; broadband representation is

difficult and expensive (see Chapter IV). In addition, phase errors

(for example, Brekhovskikh and Lysanov, 1982) in the parabolic method

could alter the physical phase fluctuations near the focusing regions,

A coupled-mode approach (Milder, 1969) may handle the variations in

range encountered but only at an even greater cost. Note that range-de-

- 24 -



25

pendent normal-mode theory will, however, be used to estimate fluctua-

tions.

3.1.2 Time-dependent solutions

The time-dependent wave equation is a hyperbolic partial differential

equation and, therefore, can be reduced by the method of characteristics

to a simpler problem of signal progression along certain surfaces (von

Mises, 1958). In one space dimension, this approach works very well

even for nonlinear partial differential equations.

As an example, consider a plane wave incident on a region in a fluid

in which the sound speed changes linearly over some finite distance (see

Figure 3). There is no impedance discontinuity to produce a reflection

but there is weak diffractive backscatter from the sound-speed gradient.

As shown in the figure, the method of characteristics (dashed line) pro-

duces an accurate calculation of the pressure impulse response of such a

layer as compared to a much more expensive superposition of single-fre-

quency plane wave reflection responses (solid line). Also notice that

the superposition solution suffers from oscillatory "ringing" at the

edges of sharp level changes (Gibbs' phenomenon).

For more than one spatial dimension, Butler (1960) has shown that the

method of characteristics can still be used but the resulting algorithm

introduces a great deal of dissipation (false absorption) and dispersion

(phase speed errors). Furthermore, the code is complicated and boundary

conditions are difficult to implement.

Moretti (1979) has developed a much simpler finite-difference scheme

that is weighted so that signals are propagated in the proper character-
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Figure 3. Prediction of reflected pressure waveform from impulse

incident to a one-dimensional gradient layer. Solid line shows

Fourier analysis results and dashed line gives results of the method
of characteristics. The average sound speed in the gradient layer

is Col.
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istic directions; the method has proven quite successful for time-depen-

dent fluid flow problems. For acoustics, however, dissipation in the

numerical code rapidly distorts the waveshape. This will be illustrated

below.

One important advantage of the method of characteristics is that the

physics of signal propagation is respected; the numerical grid advances

in the direction of local signal flow rather than in an arbitrary direc-

tion. Many codes advance the signal using data from field points that

could not physically affect the signal (e.g., using points that the sig-

nal could not have reached yet). This turns out not to be too critical

for linear acoustics but if there are finite amplitude signals, these

will be seriously distorted. With a small enough grid to combat the

dissipation, Moretti's technique may be useful for problems in nonlinear

acoustics.

Hyperbolic partial differential equations lend themselves to analysis

based on signal dissipation and dispersion. Numerical solutions can be

tested by introducing the Fourier components of a pulse and examining

the level change and phase shift as the solution proceeds in time (von

Neumann and Richtmyer, 1950). Using this procedure, a number of finite-

difference solutions to either the wave Equation (2.6) or the coupled

governing Equations (2.4) and (2.5) were evaluated. Among them were

Euler and MacCormack predictor-corrector schemes (MacCormack, 1970),

first- and second-order Moretti algorithms and a direct finite-differ-

ence solution of the wave equation. This Fourier analysis is outlined

in the next section along with the development of the direct solution

method.
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3.1.3 Direct finite-difference solutions

The selection of a direct finite-difference approximation to the wave

equation was motivated by the ability of this approach to model short

duration impulse-like signals (very large bandwidth) in a range-depen-

dent environment with no numerically induced dissipation and only a

small, predictable amount of dispersion. In addition, for low frequen-

cies, the method has about the same computational expense as a normal-

mode solution in a range-independent duct. This latter point was only

evident after the algorithm was fully verified; however, the dissipa-

tion/dispersion characteristics can be determined from the basic approx-

imation. Hence, we will consider these characteristics along with the

development of the finite-difference approximation.

Some special notation is convenient for describing finite-difference

equations: let the pressure be given at discrete points (in space and

time) by the symbol

V7_p,,, = p(Iax, mAy, nat) (3.1)

To further reduce the complexity, denote the local reference point as

po. = pz and, for example, p,_, e P,-I"

The wave equation in two dimensions is

PXX + p = /c z (3.2)
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By replacing the partial derivatives with their first-order finite-dif-

ference approximations and solving for the pressure at the (n+l) time

increment, we can write

I 2(1 - 2q')p*o - "0P-0 00 Poo

(3.3)
(plo + Po, + P. + p.)

where q = cAt/Ax and Ax and ay are equal for a square grid. This is the

fundamental equation for computing the field points at advancing time

but there are several ways to select the grid points. Figure 4 shows a

field point and its nearest eight neighbors. If the x axis is horizon-

tal, the open circles are used as grid points in Equation (3.3) with

AX = h. If, on the other hand, the coordinate system is rotated 45 de-

grees, the dark circles are used with Ax = J h. Normally dissipation/

dispersion characteristics are functions of the angle of propagation

with respect to the grid; however, Vichnevetsky and Bowles (1982) have

suggested a weighted average of difference equations for the two grids

discussed above. The resulting equation for p at the (n+l) step in time

is

p 2 p - pO + q[G /2 + (1-

= p0  +  + + 0 Go

p01 to 0 P0_ p00  (3.4)

G = 0 + 0 + 0 -, - Po ,
#.9 P11 + P)- /I p-1  00

where is a weighting factor that ranges from 0 to 1.
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Figure 4. Interior grid point and nearest neighbors for finite-
difference calculation. Dark circles and dashed axes show rotated
secondary grid.
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Consider the effects of this differential equation on a plane wave

propagating through the grid. Let

po = ex[(c( -ik'n

0oo exp t] exp[i(kx1 + k m)h] (3.5)

where k is the wave number vector with components k. and k., x is the

apparent absorption, c *is the apparent phase speed and h is the grid

spacing. If this form for p is substituted into Equation (3.4) and

solved for the pressure ratio per time step, the wave shape change is

given by

ploO / p = exp(o(&t) exp(-ikc*zr-) (3.6)

By defining an amplification factor

A = /, (3.7)

and an apparent phase speed

c arg(p" ° /p o*o )/kat (3.8)
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the dissipation and dispersion effects can be separated. Ideally, the

amplification factor A should be unity and co should be equal to the

true local sound speed c.

For Equation (3.4)

A = JD + i4l - D , (3.9)

and

D 1 q 2 -g(1 + cos cosO )

(1 -,)(cos + cosO)] (310)

where I= khcos ;, L9= khsino' and is the angle of the wave number

vector with respect to the x axis. Here, A is identically unity as long

as the magnitude of D is less than one. As described below, the parame-

ter 11 is selected to keep the dispersion errors independent of the di-

rection of propagation. Also, the high-frequency limit of the source

spectrum sets an upper limit on kh for a particular grid spacing. Con-

sequently, the solution's stability is controlled by q.

For a hyperbolic differential equation, the Courant-Friedrichs-Lewy

(Courant, et al., 1956) condition (CFL condition) sets an upper limit of

one on q. (This is a necessary but not sufficient condition for stabil-
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ity.) Physically, the CFL condition insures that the numerical solution

keeps up with the signal propagation. The parameter q is the ratio of

the distance the actual signal travels in one time step (cAt) to the

spatial advance of the grid (h). If the grid doesn't advance in space

faster than the signal, the signal will eventually pass completely out

of the solution region.

In practice, q must be somewhat less than one in order to insure that

the magnitude of D in Equation (3.10) remains less than one. A practi-

cal limit for this particular finite-difference scheme is 0.8.

The apparent phase speed ratio is given by

ca/c tan-(l1 - D1'/D)/khq (3.11)

where q has been used to replace the at from Equation (3.8) with .

This ratio (which should be unity) is plotted in Figure 5 as a function

of the wavevector angle for several values of For. For of roughly

0.4, the dispersion curve is very nearly isotropic. In Figure 6, the

value 0.4 is taken and the apparent phase speed ratio is shown as a

function of the normalized grid size kh/ir for various values of q.

This direct finite-difference algorithm introduces no artificial ab-

sorption and is stable as long as the time step is chosen to restrict

the magnitude of q. There is some dispersion but it can be limited by

proper choice of the spatial grid size h and its effects are virtually

independent of the direction of propagation.
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Figure 5. Apparent phase speed ratio c*/c as a function of the angle of

the wavefront normal with respect to horizontal. Each curve

corresponds to a different weight 1A and kh = fr/3.
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spacing for =0.4.
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By way of comparison, two other plots are shown in Figure 7 of the

dissipation and dispersion characteristics of several other solution

techniques. A simple weighted-characteristics code is shown along with

a simple predictor-corrector scheme and, for reference, the curves for

the direct finite-difference method. Notice that, even though the pre-

dictor-corrector scheme is a second-order method (halving the step size

theoretically cuts the error by a factor of four), its dissipation ren-

ders it less accurate than the direct method which is only first-order.

3.2 Special Methods for Fluctuations

Since perturbations of an acoustic medium such as the atmosphere or

the ocean are extremely difficult to model in detail, a suitable analyt-

ical method for determining the statistics of signal fluctuations based

on some parameter or parameters of the perturbations would be most use-

ful. Much of the work that has been done in this area has been based on

models of homogeneous and isotropic scatterers (and often of single

scatterers) in an isotropic medium. The next section summarizes some of

the more important work in this regard but, because physical perturba-

tions are often far from homogeneous and isotropic, none of these re-

sults are directly useful here. Section 3.2.2 summarizes Flatte's

(1979) method for calculating expected fluctuation statistics for an in-

homogeneous medium and this method will be extended to regions near

caustics. Finally, a somewhat more promising approach based on range-

dependent normal-mode theory is developed.



37

.z. . ... ..... . ... .

0.0 0.1 0.2 0.3 0.4 0.5

0.0 0.1 0.2 0.3 0.4 0.5

k hit,

Figure 7. Comparison of the dissipation and dispersion characteristics
of the finite-difference method (- ), the weighted-
characteristics method (- ),and a predictor-corrector method
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3.2.1 Homogeneous isotropic turbulence models

Chernov (1960) and Tatarskii (1967) formulated the fluctuation theory

for single spherical scatterers in an otherwise homogeneous and unbound-

ed medium. The principal result was the identification of two different

dependencies of fluctuation magnitude on range. The normalized fluctua-

tion magnitude V, given by

V = VI(P-P)/(312

varies either as r for r << r, or as r for r > r where P is the

pressure amplitude of a particular single-frequency component

r. ka 2/4 , (3.13)

and a is the length scale of an individual scatterer.

By analogy to Flatte's (1979) analysis of ocean perturbations, we can

identify five points at which real media depart substantially from the

homogeneous single-scattering model:

1. multiple scattering may predominate in real turbulence;

2. the medium itself introduces refraction thus causing determinis-

tic multipath;

3. the strength of perturbations varies vertically;

4. because of turbulence cascading, the dynamical range of perturba-

tions is large;
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5. the boundaries introduce multipath by reflection.

Clearly, the single-scattering model cannot predict the saturation that

is observed at long ranges: V approaches a limiting value of 0.52

(Skudrzyk, 1957).

Minor improvements have been made to this theory: for example, work

on absorption by scattering by Brown and Clifford (1976) and the work on

the effects of turbulence on multipath interference by Ingard and Maling

(1963). However, these models correct isolated deficiencies without

treating the overall complexity of wave scattering by turbulence in a

refracting medium. Roth (1983) demonstrates the inadequacy of these and

other simple models when applied to acoustic fluctuations in an atmos-

pheric boundary layer with convective in3tability.

3.2.2 Strength and diffraction parameters for fluctuations

One method for analyzing the ability of a realistic medium to produce

signal fluctuations has been developed by Flatte (1979). I(e accounts

for sound-speed perturbations through two parameters: a fluctuation

strength parameter r-and a fluctuation diffraction parameter A.

The strength parameter is the rms phase fluctuation produced by per-

turbations along the unperturbed ray path. The diffraction parameter, a

modification of Tatarskii's (1971) wave parameter, describes how much

the ray path must be changed in order to produce phase interference at

the receiver point. Another point of view is that f contains informa-

tion on the magnitude of the perturbations in sound speed while A indi-

cates the significance of multipath: i.e., whether distinct paths can

form or the single path is diffractively "blurred".
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This formulation accounts for the inhomogeneity of the medium itself,

for the distribution of perturbations, for multiple scattering, and for

multiple paths. Its fundamental defect is that it is based on ray theo-

ry and cannot easily be extended into classical shadow zones or to low

frequencies. As it was originally developed, it cannot be used near or

on caustics, but this deficiency will be corrected below.

In order to define the strength parameter Y, we can write a phase

integral over the ray path from source to receiver including only the

phase contributions from the perturbation component of the sound speed.

The mean square of this integral averaged over time is the fluctuation

strength

rA

< , . 14)

where Im is the normalized perturbation term

11 (x,Z't) [c(xZ,t) - c (zj/c (3. 15)

and c, is the unperturbed profile.

The diffraction parameter A is considerably more difficult to com-

pute in a refracting medium. The basic definition is

.l = (R/L) /2q, , (3.16)
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where L is the vertical correlation distance of the perturbation

patches. The quantity R is the vertical distance through which an in-

termediate point along the unperturbed ray path must be displaced verti-

cally in order to produce a 7r phase difference at the receiver. In

moving this intermediate point, the source angle must be adjusted so

that the new ray hits the displaced point and then the angle must be

changed at that point so that the ray continues on to the receiver. No-

tice that the strength of the perturbations does not affect the magni-

tude of R; it is purely a measure of diffraction. The local A value

is, however, weighted by the normalized local IT and integrated along

the entire path to get the composite A . This prevents a very large A

at a point at which there are very weak perturbations from biasing the

overall A .

In practice, the path deviation required to produce a full ?r/ phase

change is not calculated but, instead, the intermediate point is dis-

placed a small amount and R is computed based on the rate of phase

change with vertical displacement. The total travel time along a ray

can be expanded as a series for small intermediate displacement ; as

follows,

T(5 T(O) + T' + T"/2 + T /6 (3.17)

The eigenray is the minimum travel time ray so the second term on the

right side is zero and the phase difference can be written as
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4-1 IT(S) - T(OJ W 1 (T" + ST"'/3)/2 (3.18)

Normally T " is much larger than T for small 5 but T" vanishes at

caustics, hence the third-order term will be retained. When the phase

difference is IY then 5 is equal to R; therefore

2 (T + RT /3 = , (3.19)

gives the condition for R. If we neglect T , the expression reduces

to Flatte's expression as long as the unperturbed sound speed is con-

stant everywhere. (Flatte derives R in terms of path length and that

quantity is only stationary on the eigenray if the eigenray is a

straight line.)

At this point, the quantities T" and T"' must be related to the

quantities normally obtained by ray tracing. Since the ray vertex speed

c. is a more convenient independent variable than vertical displacement,

we will use it initially. The derivative of travel time T with respect

to c, holding x constant is equal to the derivative of T holding z con-

stant (the usual ray derivative) minus the travel time increment along

the extra path segment of the latter ray

(aT/ dc) (ST/dc,) - (dl/dx) ( x/ c,)/c p  , (3.20)

, Vmmmmm• mamm [ m mm
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where c. is the sound speed at the point of displacement. By Snell's

law

cP/c = dx/dl

(3.21)

dz/dx (c/c)2  - i

so that

T EdT/ cv), l(X/ cv) - cvlcP2/ (cvc 7 (3.22)

Now T is identically zero on the proper ray between the source and

the receiver so a new pair of rays must be constructed one of which con-

nects the source to a point offset slightly above the original ray and

another that connects that offset point to the receiver. This is re-

peated until there are five rays: the original ray and four other rays

that have vertical midpoint displacements of 5', 2;, -5, and -25.

From these rays, the derivatives T" and T"' are computed numerically.

Finally, using Equations (3.19) and (3.16), R and A are calculated.
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3.2.3 Range-dependent Normal-mode Theory

While the A-4characterization does attempt to account for real

distributions of sound-speed perturbations, it is based on ray theory

and, as such, it cannot be expected to produce reliable results in a

highly diffractive field. An approximate approach can, however, be de-

veloped from a wave point of view using range-dependent normal-mode

theory.

By taking the Fourier transform in time of the wave Equation (2.7),

the Helmholtz equation for a medium with range-dependent perturbations

can be written

dp cX2_ + dIP z + kr Xp g(z-z.) 9(x) . (3.23)

Let

•p(x,z) = 5 A(x) u (z) (3.24)

where u, are the unperturbed (i.e., range-independent) eigenfunctions

given by Equation (2.9). By assuming this form for the pressure, mode

coupling is neglected. Substitute Equation (3.24) into Equation (3.23),

multiply by u, and integrate over z to yield

d /'/dx 2 + ( - + D )f u (z ,) ( /f d , (3.2S)
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where

D k - k )u dz dz (3.26)

and f-, is the range-averaged eigenvalue used to compute u,. At this

point, neglect the backscattered field by writing f'as

a(x) = a(x) exp(iFX) (3.27)

If the problem were truly range-independent, the a, would be constants.

Substitute this form for ; into Equation (3.25) so that, after neglect-

ing the second derivative of a,, the a, functions can be found and

(x) u U(z ) exp i(T+ D 2 )x//2F u 2 dz (3.2,9)

Thus, the principal effect of the perturbations is to produce a shift in

the eigenvalue given by

_- k -)udz/2 / uAdz(3.29)

This provides at least an approximate method of computing signal fluctu-

ations based on wave theory. Both the eigenvalue shift technique and
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the extended A method will be applied in Chapter VII to a specific fo-

cusing problem.

The integrals in Equation (3.29) can, of course, be performed numeri-

cally but the choice of Airy functions for the vertical field variations

allows these integrals to be evaluated in closed form for either con-
LL

stant or linear variation in k - kP . Bucker (1970) gives an exact dif-

ferential for the integrand if k - kP is constant

u 2dz d d[du/dZ) I- Zuzlu? (3.30)

If we use this expression and Stoke's equation for the Airy functions

d u/dZ - Zu = 0 (3.31)

where u is any linear combination of Ai and Bi, we can write an exact

differential for

3Zu~dZ = d Iu(du/dZ) - Z[Idu/dZ)2 - Zul} (3.32)

This can then be transformed into the desired form
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a zuzdz = d [u(du/dZ) - Z(du/dZ)a+ zZu2]/3

+ - z (du/dz)2 Zu (3.33)

Using Equations (3.30) and (3.32), the eigenvalue shift can be computed

from Equation (3.29) as long as the perturbations can be approximated by

segments of constant and linear k -k For small perturbations, the

relationship

k I k I (3.34)

holds.

In the next chapter, extensive tests of the finite-difference method

will be outlined in order to establish the technique's validity. The

techniques described above (the normal-mode and the finite-difference

techniques, in particular) will be applied in Chapter VII to the study

of fluctuations induced by turbulence in a region of strong focusing.



Chapter IV

VALIDATION OF FINITE-DIFFERENCE SOLUTION

Since direct finite-difference methods have not generally been ap-

plied to time-dependent acoustic fields, the technique should be tested

for its accuracy in relation to other known solutions. While the dis-

persion/dissipation analysis of the previous chapter sets some specific

limits on the distortion introduced by the finite-difference approxima-

tion, comparisons against known solutions are necessary to insure that

diffraction, refraction, boundary effects, and the source term are prop-

erly represented.

4.1 Boundary Conditions and Source Diffusion

Transparent-boundary conditions (Appendix A) are used in the finite-

difference model to avoid contamination of the focused field by simply

reflected arrivals. Consequently, a very simple test can be performed

by keeping the sound speed constant and by applying transparent-boundary

conditions at the horizontal boundaries indicated in FPgure 1. The fi-

nite-difference solution can then be compared to two-dimensional free-

field spreading. This will test the model's representation of the

transparent-boundary conditions and of the diffusive "tails" associated

with two-dimensional geometries.

The governing equation throughout this study is the forced wave Equa-

tion (2.7). In this first test, the sound speed is constant everywhere

- 48 -
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and there are no boundaries so by converting the equation to cylindrical

coordinates with the source at the origin and taking the Fourier trans-

form in time and the Hankel transform in space, we can write

P(W) = iF(C) H0 (kx) / 4 (4.1)

where P is the Fourier transform of pressure and F is the Fourier trans-

form of the source waveform

2f(t) = A exp(-b t /4) , (4.2)

or

F ) = 2A rexp(-&,/b)'/ b (4.3)

The factors A and b scale the amplitude and the extent of the spectrum

respectively.

The relative gain (or loss) of the finite-difference model with re-

spect to the free-field spreading Equation (4.1) is shown in Figure 8

for several observation points roughly midway between the two boundaries

and at ranges of 2.5 to 3.5 times the boundary separation. The indepen-

dent variable here is the normalized grid spacing kh. The steep depar-

ture below kh equal to 0.075 is caused by the breakdown of the transpar-
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Figure 8. Level predicted by finite-difference calculation relative to

free-field spreading for a constant sound-speed channel with

transparent boundaries. The * marks the point at which the channel

width is half the wavelength.
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ent-boundary condition: below this point the boundaries are less than a

half-wavelength apart and errors in the boundary conditions become large

enough to affect the solution significantly. Between 0.075 and 0.95

there is a small departure from the desired response. These changes, as

long as they are smooth, are of no concern for this study since enhance-

ment near the caustic and loss in the shadow will cause far greater

swings in magnitude than these errors.

4.2 Corner Diffraction

Although the physical model discussed in Chapter V does not have any

wedge-shaped boundaries, the ability of the technique to predict the

field in the shadow behind a wedge is an important indication of its

overall representation of diffraction. This is, in fact, a good way of

separating diffraction and refraction since this shadowing occurs even

for constant sound speed.

4.2.1 Integral solution for diffraction by a wedge

An analytical solution for time-dependent two-dimensional wedge dif-

fraction can be constructed by the method of normal coordinates (Biot

and Tolstoy, 1957). For the polar coordinate system shown in Figure 9

with the origin at the apex of a pressure-release wedge, the solution to

the forced wave equation is
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Fig 9. eCEIVER

Figure 9. Geometry for the two-dimensional wedge problem.
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p(r,9,t) C/OX/'o

0(4.4)

2 Pv_, (A) sin sinO

fl-I

for ct greater than (r - r.) and less than (r + r.) and

p(r, G,t)

(4.5)

Q ,_-(-A) cosv,,Irsin' sinz'/

for ct greater than (r + r.) where a unit impulse driver has been used

(i.e., F I). The pressure is zero before the range of Equation (4.4).

Also

A = r + r.2 - c2 tI)/2rro (4.6)

and

7,, = n 1/ , (4.7)
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This is the exact solution for a pressure-release wedge. However,

computations of p are not practical because of the very poor convergence

of the series coupled with the difficulty of computing the Legendre

functions for non-integer degree.

This problem can be circumvented by transforming the expression as

follow5. First, the Legendre functions are replaced by contour inte-

grals of simpler functions and then the summation and the integration

are interchanged. This allows closed form evaluation of the sum. A

simple integral results that is easily evaluated numerically.

Consider Equation (4.4): Gradshteyn and Ryzhik (1965) give an inte-

gral form for the Legendre function of the first kind

P ,(A) 4r ~ A + rAfK T co0s) 2 (4.8)

0

which is valid for Re(A) greater than zero. The limit on ct in Equation

(4.4) corresponds to A between 1 and -1 so Equation (4.8) is not com-

pletely suitable.

Equation (4.8) is limited because, for Re(A) less than zero, the

branch cut associated with the branch given by

A + J F cosg = 0 (4.9)

intersects the original integration path. By defining a new integration

contour Cp that goes from 0 to Ir/2, then from f)/2 to Ir/2 + i along one
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side of the branch, around the branch point (a zero not a pole), down

the other side, and finally along the real axis to f , we can write

PZ, (A) = Y- A + Cos d5 (4.10)P , _ . (A)I d "

cp

for the entire range required by Equation (4.4). The imaginary part of

at the branch point is given by

A + f-Ysinh~i 0 . (4.11)

For Re(A) greater than zero, this diversion is, of course, unnecessary.

Next, substitute this integral form for the Legendre function into

Equation (4.4) and interchange the integration and summation to write

p = cfV 21r V" sin;o sinY 7O] dIf Y -r , (4.12)

C'*

where

V = (A + i -- cos) . (4.13)

If we expand the sine functions as exponentials and replace V" by

exp(n*InV), then the entire quantity within the summation can be written
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as terms of the form exp(n*()) and the sum can be evaluated. The re-

sulting expression for the pressure is

p fJV' (T_ - T+) d9/1GVF~,(.4

Cp

where

T (cos/ V)/(I 2V cos/ _ + V )

(4.15)

To transform Equation (4.5), an integral representation for the

Legendre function of the second kind is used

QV,,, (-A) A - rA + 1 cosh, i2 d6 (4.16)

0

For the region of validity of Equation (4.5), there are no problems with

branch cuts except for selecting the overall sign of the -v,-1/2 root.

The easiest way to pick the proper sign is by analytic continuation,

which, in this case, amounts to matching the two pressure expressions at

ct r + r'. The negative root is the proper one.
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Otherwise, the transformation is identical to the previous one and

the result is

p = c/21V" Ovi7

C(4.17)

f( (T__ + T-, - T_- T+) dq

where

v[ A -T W-cosh ) 7 (4.18)

Here, T is identical in form to Equation (4.13) with

= 7r'(6± 90_+ )/6 (4.19)

The solution is now formally complete; however, the computation of

the infinite integral in Equation (4.17) is easier in two stages.

First, the integration is performed numerically from 0 to some large r.

Then, the remaining section is evaluated by approximating the integrand

for large
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P8 c(cosy_.+ cosZ_.- cosX_- cosA)/21r9,-r-r.

2 p-)(4.20)

This integration can be performed with the result that

2c sin(1r'9/,,) sin(rr/1Q,,) exp[-gA( , )] cos17gW

B~~~~ - .(.1)

, . -L.) V/ " 7[ (A' - 1) / 4- / (]

A practical choice for 6 is 10 and the step size for numerical integra-

tion from 0 to can be surprisingly large (0.5 was used with simple

trapezoidal integration in the example below).

4.2.2 Comparison with finite-difference model

In Figure 10, the time-domain waveform calculated by the finite-dif-

ference method is compared to that calculated by the integral solution

for a 37/2 pressure-release wedge. The receiver point is well within

the shadow. Since Equations (4.14) and (4.17) assume an impulse source,

the results from these calculations have been convolved with the source

driver waveform, Equation (4.2), used in the finite-difference method.
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Figure 10. Diffraction into the shadow of a pressure-release wedge.

Finite-difference calculation is shown as a solid line while the

boxes give several points from the integral solution. Inset gives

the x and y coordinates of the source and receiver.
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Several other receiver locations were evaluated, all with equally

good results. As noted before, both long wavelength diffraction into

shadows and two-dimensional diffusion must be handled accurately for

these results to agree so well.

4.3 Focusing at Simple and Cusped Caustics

Up to this point, the validation tests have centered on those wave

effects not related directly to refraction. Since the region of inter-

est in this study is one of strong refractive focusing, a test of the

finite-difference method under these conditions is essential. An appro-

priate comparison solution for this task is a normal-mode solution.

Some of the problems in using a superposition of single-frequency solu-

tions to check a time-domain solution will become evident in this sec-

tion. Nevertheless, reasonably successful comparisons are possible.

For these comparisons, the sound-speed profile shown in Figure 1 was

used and perfect, pressure-release boundary conditions were applied at

the upper and lower boundaries in both the finite-difference model and

the normal-mode model. Since the boundaries are perfectly reflecting,

the normal-mode solution predicts infinite-Q resonances; these would

not, of course, be described by any time-limited solution. In order to

avoid this mismatch, a very small amount of attenuation was added to the

modes with ray-equivalent angles greater than 85 degrees from the hori-

zontal. Also, because the driver is a transient and the range is rela-

tively short, low-frequency evanescent modes were included in the solu-

tion.
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Figure 11 shows the predictions of the mode model (dashed lines) and

the finite-difference model (solid lines) at a cusp (upper plot) and on

a simple caustic (lower plot). Overall, the agreement shown is excel-

lent. Notice that, at the upper end of the spectrum, the curves are

shifted slightly. This is evidence of the phase errors introduced by

numerical dispersion in the finite-difference method. More than 4000

modes are included in the normal-mode solutions shown in these figures.

If the evanescent modes are neglected, the spectra differ markedly.

Also, without the attenuation applied to the higher order modes, very

large peaks appear at several frequencies in the mode curve.

The efforts of this section underscore some of the problems associat-

ed with computing time-dependent solutions by Fourier superposition of

single-frequency solutions. Two fundamental problems limit the accuracy

of such calculation. The first is the reciprocal relation of frequency

resolution and signal time duration. Many, closely spaced single-fre-

quency solutions are required if a long time duration is expected in the

signal.

The second problem has its roots in the type of equation being

solved. The single-frequency solution is a solution to an elliptic dif-

ferential equation (the Helmholtz equation) and, therefore, the entire

space must be considered out to all boundaries including those at infin-

ity. A change anywhere in the space changes the solution so some care

must be exercised in selecting boundary conditions even if the real

time-dependent signal would not reach those boundaries during the obser-

vation period. The time-dependent solution is the solution of a hyper-

bolic equation (the wave equation) and its progression follows the ad-
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Figure 11. Comparison of finite-difference (solid lines) and normal-

mode (dashed lines) solutions. Upper plot shows the field level

(arbitrary reference) at a cusp while lower plot gives the level on

a simple caustic.
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vance of the physical wavefront: conditions outside this envelope do not

affect the solution in any way. This conflict shows up in the apparent-

ly perfect reson-ices in the mode solution for ideal boundaries.

4.4 Limitations of the Finite-difference Solution

The most serious limitation of the finite-difference technique is the

dispersion that forces a relationship between step size and maximum fre-

quency. At about five points per wavelength (about 30Hz in the atmos-

pheric problem considered later), the distortion becomes noticeable.

This should be true in any application of the method so, given the maxi-

mum frequency and the minimum sound speed (to get the minimum wave-

length) the grid size is fixed. In pushing the limiting frequency up-

wards, be aware that the running time increases as the linear density of

grid points cubed since the time step must also be decreased as the grid

spacing decreases.

The low-frequency limit is forced by imperfections in the transpar-

ent-boundary condition. As shown in Figure 8, this limit is kh roughly

equal to 0.075 (about 2Hz for the atmosphere problem). If another type

of boundary such as a rigid or pressure-release boundary is acceptable,

this limit would be much lower. It could also be lowered by moving the

boundary farther away at some increase in cost: doubling the distance

to the boundary would only double the computation time.

Given these limitations (primarily economic), the finite-difference

scheme is well suited for impulse studies in two-dimensions. Wave ef-

fects are accurately represented and large range variations as well as

depth variations in sound speed and boundary geometry are easily accomo-

dated.



Chapter V

SOLUTION CONTEXT

Focusing of waves occurs frequently in nature and, in a number of

these cases, the relevant frequencies can be in the range of strong dif-

fraction. For acoustic waves in the atmosphere, focusing can take place

over distances ranging from less than a hundred meters to thousands of

kilometers. Intense temperature inversions over snow coupled with wind

shear can produce dramatic short range focusing (Thomson, 1984). In

this case, the caustics would only be separated by a few meters and

strong diffraction could extend to several hundred hertz. At he other

extreme, acoustic waves from the SST (Weber and Donn, 1982) or meteors

(Bedard and Greene, 1981) can be focused by strong temperature gradients

in the thermosphere although here the focusing region may be on the or-

der of 1000km from the sotrce and strong diffraction would only be ob-

served for extremely low frequencies (well below 1Hz). Of intermediate

scale is focusing by wind shear in the atmospheric or planetary boundary

layer (PBL).

Also, short and long range focusing in the ocean results from, for

example, surface ducts or the SOFAR channel (Urick, 1979). Oceanic

sound speed is four to five times higher than sound speed in the atmos-

phere so, for the same range scales, the upper limit in frequency for

strong diffraction in the ocean is four to five times higher in the

ocean than in the atmosphere.

- 64 -
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At very low frequencies, ionospheric refraction of electromagnetic

radiation (Brekhovskikh, 1980) can be strongly diffractive. At very

high frequencies, refraction and focusing that create optical mirages

(Fraser and Mach, 1976) would normally be well represented by simple as-

ymptotic correction to ray theory.

5.1 Focusing in the Planetary Boundary Layer

While focusing in a stratified medium could be analyzed in a general

way with normalized distances and frequencies, the introduction of real-

istic levels of perturbations depends on the specific environment being

studied. In order to consider a useful perturbation problem and to be

able to assign values to parameters, a specific problem is examined

here: short-range focusing in the PBL. All of the general results are,

however, still applicable to any strongly diffractive focusing environ-

ment.

5.1.1 Effects of wind on sound speed

Because bulk flow (wind) in the atmosphere is not generally negligi-

ble compared to the speed of sound, the wave equation must account for

these flow effects. We could combine Equations (2.4) and (2.5) into a

wave equation without dropping the bulk flow terms but it will be easier

to include a simplifying assumption if we instead compute the implied

dispersion relationship. By substituting time-harmonic expressions for

p and v (through a velocity potential), we can find the condition that

allows non-trivial solution of the coupled Equations (2.4) and (2.5)
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4Ik = c + ok/k , (5.1)

where k is the wave number vector and w is the angular frequency. In

other words, Equation (5.1) gives an effective sound speed.

In the atmosphere, the bulk flow is primarily horizontal and the rays

are nearly horizontal particularly at the altitudes of the higher wind

speeds. Thus, we can write an approximate relation for the effective

sound speed

ceW = c + U , (5.2)

where U is the component of the wind in the direction of propagation.

This effective sound speed is used directly in the usual time-dependent

wave Equation (2.6).

Since air behaves very nearly as an ideal (albeit composite) gas, the

expression for c is simply

c = RT/M , (5.3)

where, for air, V= 1.4, R = 8.31 J/mol*K and M = 0.029 kg/mol so that
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c = 20.0 F , (5.4)

where T is the Kelvin temperature. At this point, we will cease to la-

bel c as effective and understand that the sound speed is given by

c 20.0 + U ,(5.5)

where, as before, U is the downrange component of the wind speed.

5.1.2 The planetary boundary layer

Thermal and mechanical effects of the ground on atmospheric flow are

confined to a region of flow transition known as the planetary boundiry

layer or PBL (Panofsky and Dutton, 1984). In this region, the wsind

makes the transition from a flow that is dominated by surface friction

effects to one that is undisturbed at the altitude corresponding to the

top of the PBL. Also, the structure and dynamics of the PBL depend

strongly on the convection induced by ground heating. When the temper-

ature decreases sufficiently fast with altitude so that a rising (ind,

hence, adiabatically cooling) parcel of air maintains buoyancy, ground-

heated air will be vertically convected and disturb the horizontal flow

to altitudes of up to one or two thousand meters. This is typical of a

daytime neutral or slightly unstable PBL.



68

When the temperature profile is such that convection is suppressed as

is normally the case at night as a result of radiative cooling of the

surface, the transition layer effects are primarily surface friction and

mechanically induced turbulence. In this case, the PBL is much thinner,

perhaps only a few ten's or at most a few hundred's of meters. In this

condition of stable flow, strong, infrequently turbulent winds aloft are

common and the usual positive gradient in wind speed with altitude adds

to that of the temperature gradient and causes strong downward refrac-

tion and focusing of sound.

In order to determine the dominant features of a particular PBL, the

stability with regard to vertical convection must be determined. If a

small parcel of air is displaced vertically, it may continue to move up-

ward through its own buoyancy (in an unstable layer) or it may oscillate

about its rest position at some frequency (in a stable layer). This

frequency is known as the Brunt-Vaisala frequency (for example, see

Beer, 1974). For a perfect gas, it is

2

= g(O - o<)/T , (5.6)

where c, is the vertical temperature gradient, z- is the adiabatic gra-

dient (-0.0098 K/m), and g is the acceleration of gravity. If W" is

negative, the layer is unstable and thermal convection can cause mixing

throughout the layer; if is positive then the flow in the layer is

stable and gravity waves can form.
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In a convectively unstable PBL, the Richardscn number describes tur-

bulence maintenance (Schlichting, 1979). This number is the ratio of

buoyant production of turbulence-related kinetic energy to shear-stress

production of turbulent kinetic energy and, in terms of 6S is

Ri  = 1 2/( ) U/ z) , (5.7)

where U is the horizontal wind speed. If R- is greater than about 0.25,

turbulence is suppressed. For Ri less than zero, convective turbulence

dominates and, in between, shear-produced turbulence dominates.

Figure 12 shows the meterological parameters that characterize the

PBL at a time of strong focusing (Brown, 1980 and Thomson, 1983). These

parameters were measured using tethered, instrumented balloons by the

University of Virginia to support noise interference studies for the

DOE/NASA Mod-l wind turbine generator near Boone, North Carolina. The

figure shows a typical nighttime stable flow. Except for a small, ele-

vated layer (from 75m to 85m altitude), the flow is stable. In fact, it

is strongly stable (R. >> 0.25) in the first 50m so that any thermal

convection from the ground would be strongly suppressed. Also, a strong

vertical wind-speed gradient exists above the surface layer.

For this particular PBL, the maximum Brunt-Vaisala frequency corre-

sponds to a period of 200 seconds. Consequently, there will be no meas-

urable coupling between gravity waves and acoustic waves and the gravity

terms can be safely omitted (as we have already done) from the governing

equations.
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Figure 13 shows the sound-speed profile for the meteorological condi-

tions of Figure 12 including the envelope of perturbations. (This enve-

lope is described in section 5.2.) Although the finite-difference model

can accept an arbitrary profile, in order to facilitate comparison to

normal-mode and ray models, two layers are used to fit the environmental

data. Each layer has a linear variation in the square of the reciprocal

of the sound speed. This turns out to be an excellent fit for the up-

per, steep-gradient layer.

Although the frequency range of the investigation to follow is so low

as to render analysis by ray theory questionable at best, some insight

into the focusing produced by this profile can be gained from the ray

diagram in Figure 14. The three limbs of the caustic (and the two

cusps) are shown in Figure 15 along with the observation points used in

Chapters VI and VII. Three general areas are examined with these

points: the transition from the illuminated side of a simple caustic to

the shadow side; the field between two closely spaced caustics; and the

near-ground field before and near one of the cusps.

5.2 Perturbition Model

There are my possible processes that can produce large scale hori-

zon: ii ;' jes in the atmospheric boundary layer. One common

. ,:it ions is gravity wave formation. In complex

ter: v, :,e region surrounding the wind turbine generator at

Be.,, '0 7. ,:ni, mechanically induced turbulence is often formed

in t, . ,: idge. For this investigation, we will choose the

turbol I nc r-,.,In 1!,m.
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Figure 13. Sound-speed profile (dashed line) corresponding to

temperature and wind speed profiles in Figure 12. Solid line shows

profile used in finite-difference model and shaded region gives

envelope of sound-speed perturbations.
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A detailed model describing such turbulence in detail would be pro-

hibitively complex if indeed at all possible; however, since we are not

seeking to duplicate one particular flow condition but rather to de-

scribe the general nature of signal fluctuations, a simple but not un-

realistic model will suffice. An artificially introduced perturbation

component of the observed wind is shown in Figure 16. The lower part is

the normal power-law profile (Tennekes and Lumley, 1972) typical of tur-

bulent boundary flows. This is, in fact, the same power-law that is

used to extend the measured profile of the unperturbed wind to the

ground. (In other words, the power-law applies to the sum of the per-

turbation component and the unperturbed wind.) This power-law section

extends to the top of the temperature inversion (70m) shown in Figure

12. Above this region, there is no particular theoretical basis for the

profile but observations (Thomson, 1984) suggest that a 30m layer of

linearly decreasing perturbation speed is not unreasonable. This per-

turbation profile is modulated sinusoidally in range with a period of

140m or twice the characteristic height and then added to the steady-

state wind profile of Figure 12. In addition, the perturbation pattern

is advected downwind at the minimum wind speed in the upper part of the

surface layer (l.5m/s). Since temperature variations have a negligible

effect on the sound-speed profile (in this case), the steady-state tem-

perature profile is used without perturbation.

The perturbed wind speed is then given by

U(x,z) = Uo(z) + u(z) cos[Ir(x + v.t)/2 ] (5.8'
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where U0 (z) is the steady-state wind profile, u(z) is the perturbation

amplitude profile, z is the characteristic height (70m), and va is the

advection speed (l.Sm/s). Also

A ^ V7 0Au(z/zA) ; 0< z
AA A

u(z) u(2 - z + 30)/30 ; (A . z < z + 30) , (5.9)

0 ; ( + 30 - z)

where U is the perturbation level at Z. For this particular profile,

the wind direction did not vary significantly so any directional correc-

tions are ignored and directly downwind propagation is assumed.

5.3 Source Characteristics

The source used in this study simulates a line array of WTG's (as

might be the case at a wind farm rather than an isolated turbine) by us-

ing a line source. This is a crude representation since the turbines

would not normally be rotating in phase; however, this will serve to

simulate a worst-case, on-axis beam. In the finite-difference model,

the line source is introduced by using a point source in a twc-dimen-

sional Cartesian coordinate system.

At the Boone installation, an annoying sound was produced by passage

of the blade through the turbulent wake of the supporting tower (Kelley,

1981)). To simulate this, a narrow impulsive source waveform is used

that has a broad spectrum (see Equations (4.2) and (4.3)). The Mod-l
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wind turbine generator (WTG) blade rotated at 35rpm so approximately one

pulse per second was produced. Consequently, there will be a rapid drop

in source level below 1Hz.

According to measurements by Kelley et al. (1982), the part of the

received WTG signal that was above the noise at the affected dwellings

was bandlimited below 25Hz. Since this range is entirely subaudible,

the annoyance was apparently a result of excitation of the natural vi-

brational modes (at approximately 5,12 and 20Hz) of the human body

(Tempest, 1976). The incoming acoustic energy did not directly couple

the modes (the "noise" was not generally objectionable outside the hous-

es) but, instead, it excited diaphragm modes in the floors and walls and

these, in turn, produced annoyances to the residents.

5.4 Configuration for the PBL Model

Since the mechanics of the finite-difference method have been devel-

oped in Chapter III, a particular model can now be configured for the

PBL problem. In order to maximize computational efficiency, the range

coordinate is transformed by gradient scaling (see Appendix B). In the

atmosphere, as in the ocean, range scales are generally larger than

height scales but an approximately square grid is more efficient for

calculation. In this case, a 5-to-l range compression is used so that

the resulting grid of 70 by 225 (2m spacing) represents 140m in altitude

and 2250m in true range.

Because of this gradient scaling, the highest sound speed in the

field rises to 480m/s. In order to limit q to no more that 0.8 anywhere

in the field, the maximum time step is 0.00333s. Notice that, in the
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unscaled case, this maximum would be 0.00435s. This loss in time ad-

vance per step is far outweighed by having to cover only one-fifth the

distance downrange.

The source is located at 31m above the ground. This position was se-

lected only to provide a clean caustic region; it is otherwise arbi-

trary. Since the purpose of this study is to examine only aspects of

the propagation rather than simulating the Boone situation per se, no

attempt was made to include features such as actual topography or sur-

face impedances.

Source points traditionally cause problems in finite-difference

schemes (e.g., Alterman and Karal, 1968). This is avoided here by de-

fining a fairly large source region (40m in radius from the source) and

computing the source field analytically at two consecutive time steps.

These starter fields are then used as initial conditions. A very accu-

rate representation of the source is possible if the peak of the source

pulse is put about halfway out into this source region (i.e., ct, = 20

in this case). Hence, a start time of 0.059s is used here.

Dispersion is controlled by proper selection of source bandwidth and

grid spacing. These two parameters determine kh and this can be set ac-

cording to the dispersion curve in Figure 6. The choice of 2m for h was

made in order to keep kh below v/3 up to 25Hz. Source bandwidth is con-

trolled by b in Equation (4.3). A value of 82.82 for b reduces the

source amplitude by a factor of ten at 20Hz and by a factor of 400 at

30Hz.

The final element in the PBL configuration is the transparent-bound-

ary condition. Since this investigation is concerned primarily with re-
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fractive focusing, interfering multipath from simple reflection is

avoided by using Reynolds' (1978) method for transparent boundaries. A

summary of this condition is contained in Appendix A. The lower limit

on kh imposed by defects in the transparent-boundary condition is, ac-

cording to Chapter IV, 0.075, which is about 2Hz in this case. Rigid

and pressure-release boundaries are, of course, much easier to insert.

If a different problem is to be modeled, the design process would

proceed as follows:

1. determine the maximum frequency of interest and select b so that

the source spectrum drops below one percent somewhat higher than

this frequency;

2. based on the minimum sound speed, compute the required grid spac-

ing h for kh less than 7,/3 at the maximum frequency;

3. select a time step so that q is no greater than 0.8 at the maxi-

mum sound speed;

4. define a source region with a radius of about 20h and pre-calcu-

late the starter fields within this region at a time equal to

half this radius divided by the local sound speed;

5. select appropriate boundary conditions.

The fastest computations are possible if the entire solution grid at

three consecutive time steps can be kept in memory, but, since the tech-

nique is explicit, this is not a requirement. Pieces of the grid can be

swapped in and out of active memory if the overall grid size is very

large.

The model of atmospheric structure used here takes about half a mega-

byte of storage on an IBM 3033 so no memory swapping is required. One
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of the outstanding features of the finite-difference method for studies

of large regions of the field is that the solution is obtained at every

grid point, not just a few selected receiver points. A normal-mode so-

lution for a simple two-layer model is only cheaper than the finite-dif-

ference model for less that 20 receiver points.



Chapter VI

STRUCTURE OF THE UNPERTURBED FIELD

Before the influence of sound-speed perturbations can be assessed,

the structure of the unperturbed field must be understood. This under-

lying structure not only determines the nature of diffraction near a

wave convergence but also affects the response of the field to perturba-

tions. Consequently, some effort is spent in this chapter to examine

the field structure in the context of diffractive wave phenomena.

6.1 Overall Field Structure

In order to reinforce the distinction between a strongly diffractive

field and its asymptotic (high-frequency) limit given by ray theory, let

us first examine the overall field in the multiple caustic region.

Consider the ray picture shown in Figure 14. According to the ray

diagram, the region of focusing consists of three distinct limbs of a

caustic joined by two cusps. This structure is delineated in Figure 15.

The strongest limb is the ascending limb while the weakest (by far) is

the almost-horizontal reciprocal limb. (The strengths are apparent from

the line density in the plot but these qualitative statements were veri-

fied by ray theory calculations with first-order caustic corrections.)

The almost horizontal limb and the associated cusp are called "recipro-

cal" because they occur at about the reciprocal altitude or the altitude

in the upper layer that has the same sound speed as the source does in

- 82 -
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the lower layer. A shadow is formed in the area to the right of the

ascending limb and above the reciprocal limb. There is another shadow

to the left and below the connecting limb but this is not pure shadow

because direct rays weakly ensonify the region. Also, the lower cusp

appears to be particularly intense.

Because the wavelengths considered here are of the order of the caus-

tic spacing, conclusions based on this ray picture (or on a ray trace

calculation) can be quite misleading. To demonstrate this, Figures 17,

18, and 19 were constructed from the results of the two-layer normal-

mode model described in the previous chapter. (The finite-difference re-

sults could also have been used.) The caustic limbs are superimposed on

these contour plots as dashed lines. The contour lines represent lines

of equal field level relative to free-field spreading and the contour

increment is 3dB. In all cases, the actual wave field bears only a cas-

ual resemblence to the ray structure.

The results at 5Hz are particularly striking: the contoured field in

Figure 17 shows a smooth, broad ridge roughly centered over the multiple

caustic and approximately parallel to the ascending limb. The only hint

of the multiple caustic structure is the slight upturn in the contour

lines at the far right near the reciprocal limb. There is no indication

at all of the lower cusp while the presence of the upper (reciprocal)

cusp merely fills in the upper end of the valley to the left of and par-

alleling the focal ridge. The two major depressions correspond to the

shadow regions of the ascending and connecting limbs. Obviously, if the

caustic structure were not already known from ray tracing, it could not

be inferred in any detail from the field "ontour plot.
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The field plot at 10Hz, shown in Figure 18, delineates the weak re-

ciprocal limb more clearly than at 5Hz, but there is, again, no indica-

tion that there are two other strong caustics. PA fact, at both 5 and

10Hz, the field contour lines cut across the connecting limb at a high

angle near the upper cusp. Simple asymptotic corrections to ray theory

would trace the contours parallel to the caustic. As at 5Hz, the

"strong" lower cusp does not show on the contour plot. Notice that in

the upper right shadow region, the wave field is actually highly struc-

tured as if there were several interfering paths. In fact, there is

more structure in this deep shadow than in the illuminated zone. Note

that first-order asymptotic ray theory predicts a smooth, featureless

decay into the shadow.

At 20Hz (Figure 19), the upper cusp and the wedge formed by that cusp

and the connecting and reciprocal limbs are indicated by the two ellip-

tical peaks. Again, the multiple caustic is represented predominantly

by a long, single ridge paralleling the ascending limb. The dropoff

into either shadow is faster but the upper right shadow still shows much

more structure than the illuminated region between the limbs. Curiously

enough, the lower cusp is still not a distinguishable feature of the

wave field.

By quickly scanning Figures 17, 18, and 19 in order, the trend is

clear. The wave field is slowly approaching the general shape of the

convergence suggested by the ray trace. This would continue until, at

very high frequency, the multiple caustic structure would be clearly de-

fined and the interference pattern in the shadow would be generally de-

structive. Throughout the frequency range shown here, however, the ray

representation is a very poor indication of the actual field.
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In particular, the wave field structure is a generally featureless

enhancement in the high intensity region while, in the shadow, there is

a distinct interference structure. In the following analyses, the caus-

tics will be used as reference lines to locate observation points in the

field, but, as we have seen, they have little intrinsic significance at

these frequencies.

6.2 Structure in the Shadow Zone

Since ray theory does not provide much information about the field

structure at low frequency, we will use the wave results given by both

the finite-difference method and normal-mode analysis. The shadow zone

is, perhaps, the most interesting region since the greatest changes in

signal characteristics occur there.

6.2.1 Finite-difference results

The finite-difference model produces the received time waveform di-

rectly for a pulsed source. Figure 20 shows the variation in the re-

ceived waveform for the points in the set labelled "shadow zone" in Fig-

ure 15. The trace at the top is from a receiver well inside the

illuminated zone and the shape is similar to the source pulse with an

extended tail. This tail is a characteristic of two-dimensional spread-

ing and appears in all of the pulse waveforms. As we penetrate the

shadow zone (moving downward in Figure 20), the pulse flattens consider-

ably and broadens slightly as if the initial single pulse were being

split into two very closely spaced pulses of reduced amplitude. Another

way of viewing the pulse change is that the high-frequency components
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are being lost more quickly deep in the shadow. As we will see, both of

these interpretations are correct: there is some high-frequency rejec-

tion in the shadow and there is a significant multiple arrival structure

in the shadow (in spite of the ray theory prediction that there are no

arrivals here at all).

In Figure 21, the magnitude spectra for several of the shadow zone

points are shown. The two principal features are the increasing amount

of high frequency rejection with deeper penetration into the shadow and

the changing interference pattern. As we progress into the shadow, the

spectrum interference nulls become more closely spaced. The interfer-

ence pattern is quite simple indicating only two or three major inter-

fering components and the null shift indicates that the arrival time

difference between the components is increasing with penetration into

the shadow. In order to locate the cause of this interference, we must

use another wave theory model: the normal-mode model.

6.2.2 Cumulative mode-sum analysis

A ray theory calculation considers the field to be the sum of all

possible rays connecting the receiver to the source. The normal-mode

method, on the other hand, develops the field as the sum of the permis-

sible elementary waves determined by the boundary conditions. For a

point source in a horizontally stratified medium, the elementary waves

are cylindrical waves while, in this analysis for a line source, the el-

ementary waves are plane waves. In either case, if we cut the field

with a vertical plane parallel to the direction of propagation, we would

see that each mode (elementary wave) would have its own wavefront and
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that these wavefronts would be curved by the sound-speed gradients.

Equivalent rays could be drawn for each mode and they would be perpen-

dicular to the wavefronts. In fact, at a high enough frequency, sets of

modes can be isolated and summed to produce a field pattern that looks

like a "fuzzy" ray path connecting the source and the receiver.

While the ray plot is useful for understanding the structure of weak-

ly diffracted (high frequency) fields, the mode-sum plot is useful for

interpreting the structure of both strong and weak diffraction. In this

plot, the complex numbers representing each term in the mode sum (Equa-

tion (2.8)) are added and, after each term is added, the new partial sum

is plotted on a grid with the real and imaginary parts as the two axes.

In this way, the development or progression of the mode sum can be seen

from the lowest order mode through the highest order mode.

Along some sections of this curve, the modes will appear to be com-

bining haphazardly without contributing to the overall movement of the

endpoint in the complex plane. Along other sections, the modes will be

working together to produce generally straight progress (although often

with superimposed wiggles) in some direction. In the first case, these

modes are unimportant since they do not affect the final result much.

In the second case, the groups contribute directly to the field

strength, each group representing a specific component of the field. At

high frequency, the groups are very well defined and, as we will see,

these same structural features can be identified at low frequency as

well.

Mode-sum plots for four of the shadow zone points at 20Hz are shown

in Figure 22. Here, the highest-order modes near the end of each curve



93

Ii

o 0

-0.05 0.00 0.05 -0.05 0.00 0.05

2 3

o 5

Fiue2.Md-umposo0z o pons20,4ad ntesao

ro n.



94

(the end away from the origin) circle around tightly and do not contrib-

ute significantly to the final field value. This is a good indication

that enough modes have been taken to get a good solution. Most of the

other modes are adding in a reasonably orderly manner. Scanning from

the upper left to the lower right (from the caustic into the shadow), we

can see that the sum seems to be grouped into three or four segments and

that the overall curve is folding up rather than either curling up or

degenerating randomly. Thus, there are, in the shadow, several inter-

fering components made up of partial sums of modes.

If we compute a ray equivalent angle based on the eigenvalue of the

central mode in each group according to the equation

cos 9 = ,/k , (6.1)

where Z is the angle from the horizontal, we can determine something of

the nature of these groups. In the upper left plot, there are three

distinct groups: one that goes straight down from the origin, a second

that goes up and slightly to the left, and a third that goes further up

and to the right. The second and third groups meet at the real axis.

The first of these groups has an imaginary equivalent angle. This indi-

cates an evanescent component in the form of an inhomogeneous wave re-

sulting from diffractive leakage out of the refractive turning point

somewhat below the receiver altitude. Of course, no real ray equivalent

exists for this component.
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The second and third groups do have real equivalent ray angles and,

thus, represent real propagating waves that result from the diffractive

broadening of the ray paths forming the caustics below. A crude repre-

sentation of a low-frequency ray would be a very broad, curved swath

and, in this case, the paths have become wide enough to extend well into

the classical shadow. In fact, at 20Hz, a typical value for the ray

width parameter given by Equation (2.21) is 100m.

Consequently, the interference-like structure shown in the shadow

spectra is, in fact, interference of several distinct field components

both propagating and evanescent. The reduction in field level into the

shadow is the result of a very orderly folding of the mode sum until,

deep in the shadow, it has been broken into so many segments that it ap-

pears to be completely disordered.

6.2.3 Asymptotic analysis

Obviously, simple ray acoustics fails at a caustic; however, the sin-

gle-term asymptotic correction given by Equation (2.27) allows calcula-

tion of a value for the field at and near the caustic. Unfortunately,

at the frequency range of interest here, this ray theory correction

gives very poor results.

Figure 23 shows the spectra of the field computed by the finite-dif-

ference method (solid line) at points 4 and 7 of the shadow zone series.

The field predicted by the asymptotic correction to ray theory is also

shown as a dashed line. The interference structure of the shadow zone

field is, of course, absent in the asymptotic theory.
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This first-order asymptotic correction was also computed for the

points in the inter-caustic zone but the agreement was even poorer there

so that the results are not shown. Typical values for the characteris-

tic caustic width CP of Equation (2.29) range from 50m to 150m at 201z

(and 250m to 400m at 5Hz) so, clearly, the caustics are much too close

together to be treated as distinct. Consequently, the first-order as-

ymptotic correction is of little value. We will consider the second-or-

der correction in the following section.

6.3 Structure of the Multiple Caustic

6.3.1 Mode-sum analysis

As in the shadow zone, we will again resort to the mode-sum plots to

interpret the field structure. Since there is very little change in the

spectrum or waveshape of the received pulses over the inter-caustic zone

(and the cusp zone), the spectra and time series plots will not be

shown. Figure 24 shows the mode-sum plots for four of the points in the

inter-caustic region of Figure 15. The lower left plot is at the point

of maximum field level in this zone.

One feature, identical (except for angular orientation) in all four

of the plots, is that of the first two straight line segments from the

origin. These two modes give the direct, low-angle path into this zone

that is also shown on the ray plot. The other modes are associated pre-

dominantly with the higher angle converging rays.

The lower left plot at the field maximum shows that all of the modes

form one group (beyond the direct path segment that happens to be in the

same direction) working together to build up the field level. Instead
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of breaking up into a few discrete groups as the shadow zone modes did,

this single mode group smoothly curls up on either side of the field

maximum. There is no separable two-caustic structure at this frequency

(20Hz). This is in accord with the overall field levels shown in Figure

19. Notice at point 1 (upper left plot of Figure 24) the mode sum has

curled up to form a complete circle without showing any other distinct

grouping.

Hence, the field in the inter-caustic zone actually only has one

structural feature (aside from the trivial direct path) and this is rep-

resentative of the general convergence and constructive interference in

this area. There is no indication, even in the mode sum, that there are

two caustics. Consequently, use of the extended A theory to predict

fluctuations in the inter-caustic zone probably has little meaning at

these frequencies since it takes both caustics into account.

6.3.2 Asymptotic analysis

As we have seen, the two caustics bordering the inter-caustic zone

cannot be treated as distinct elements. Instead, we can compute the

field based on the second-order asymptotic correction to ray theory giv-

en in Equation (2.31). Figure 25 gives a contour plot of the field lev-

el (relative to free-field spreading) predicted by this second-order

correction. To construct this figure, the weak reciprocal limb was ig-

nored and the range Equation (2.30) was fit to the ascending and con-

necting limbs. These two limbs did, however, have quite different sec-

ond derivatives at the caustics so a symmetric cubic curve is not a good

representation. This asymmetry was reduced greatly by bisecting the
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wedge formed by these two caustics and the lower cusp, and taking a new

"range" coordinate perpendicular to this bisector. In this way, the

transformed range coordinate cuts both caustics at an angle approaching

90 degrees. The second derivatives of this transformed range became

much more nearly equal. Once the coordinate transformation was done, X

and Y could be computed by Equations (2.33) for a grid superimposed on

the caustic system. Then the field was calculated from Equation (2.31)

as discussed in Chapter II.

Although the frequency is still too low to allow detailed prediction

of absolute field levels, the desired structure is clearly shown. There

is a smooth ridge centered on the two caustics with depressions on ei-

ther side. In addition, beyond these depressions, the field temporarily

increases again thus showing the structure that is observed in the shad-

ow by the mode and finite-difference methods. This structure is com-

pletely absent from the first-order asymptotic calculations.

As the frequency is increased, the major depressions would slide in

toward the caustics and down toward the lower cusp. By scanning Figures

17, 18, and 19, we can see that this trend is correct but, again, the

frequency is not high enough for the correspondence to be good in de-

tail.

6.4 Structure near the Cusp

Because this cusp does not appear as a distinct feature on the over-

all field plot in Figure 19, we would not expect the structure to be

very different from that in the inter-caustic zone.
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The mode-sum plots for four points of the cusp series (see Figure 15)

are shown in Figure 26. As in the inter-caustic zone, there are two

distinct features: one mode representing the low-angle direct path and a

large group of modes that represents the convergence. The direct path

mode here generally opposes the other group but, otherwise, these plots

are very similar to those in Figure 24.

We would expect that a frequency high enough to display the multiple

caustic structure in the inter-caustic region would also resolve the

cusp. By means of the X parameter of the second-order correction, we

can determine what the lower frequency limit for resolution of the two

caustics is. A value of -4 for X is required in order for the integral

of Equation (2.31) to show two distinct ridges, one at each caustic. At

20Hz, X is about -2 at 50m altitude. Since the horizontal wave number

is proportional to frequency, each derivative of range with respect to

wave number gives an inverse proportionality to frequency. Thus, from

the first of Equations (2.33), we can see that X is proportional to the

square root of frequency. Consequently, the two caustics and the cusp

should appear as distinct features at 80Hz (four times 2011z) or greater.
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Chapter VII

SIGNAL FLUCTUATIONS

Once time-varying perturbations in sound speed are introduced, the

signal levels throughout the field fluctuate. These fluctuations are

easy to simulate with the range-dependent finite-difference model, but

this simulation, by itself, does not shed much light on the underlying

causes of the fluctuations.

In Chapter III, we considered a ray interpretation of the fluctuation

mechanism through the A and 9parameters. By following rays through a

perturbed medium, three effects can be isolated: First, the ray path

itself changes from the unperturbed path and there is a concommittant

change in spreading loss. Second, an additional path may be possible,

thereby introducing the potential for multipath interference. These two

effects are considered simultaneously by the diffraction parameter A

and, in cases where, under the influence of perturbations, the original

path splits into two paths, neither of which resembles the original

path, the A parameter can miss important contributions to the fluctua-

tion. The third effect that is described by ray theory is the phase

change resulting from differences in sound speed along the path. This

effect is given by the strength parameter

When the unperturbed field intensity can be adequately modeled by ray

theory, these ray-based concepts of fluctuation have some utility. How-

ever, by probing a strongly diffractive region of focusing by wave meth-

104 -
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ods in Chapter VI, we have seen that ray theory predictions can recreate

the general features of the field only after a rather elaborate asymp-

totic correction. Since the fluctuation parameters A and I are based

on simple ray theory, there is no reason to expect that t',ese parameters

will be useful for estimating the type and magnitude of signal fluctua-

tions in the present example.

In order to characterize fluctuations in wave terms then, we will

consider the normal-mode decomposition of the field. This approach is

still deficient in that, in the case we are considering, mode coupling

is undoubtedly significant and we will ignore this coupling completely.

In spite of this omission, some useful results can be developed. In

this chapter, the fluctuation predictions of the finite-difference model

will be briefly summarized and then a substantial effort will be devoted

to the mode interpretation of these fluctuations.

7.1 Calculated Fluctuations

As described in Chapter V, the perturbations are introduced as a hor-

izontally cyclic pattern of sound-speed variation that drifts through

the field at 1.5m/s as a crude representation of the advection of large-

scale turbulence. The pattern's period is 140m so the fluctuations

should completely cycle about every 95s. As a compromise between the

expense of running the finite-difference model and the desirability of

frequent sampling, sixteen runs were made covering one complete cycle of

fluctuation.
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7.1.1 Time histor of received levels

Figures 27 and 28 show the calculated level fluctuations at 2, 5, 10

and 20Hz for two of the points in the inter-caustic zone (points 1 and

5). Here, as before, the relative level scale indicates the gain over

free-field spreading in a homogeneous medium. As we would expect, the

higher frequencies show greater fluctuation and also greater departure

from free-field spreading. Notice also that the 20Hz curve shows more

variability at point 1 than at point 5, point 5 being at a point of

greater field enhancement. This is a consistent feature of these simu-

lations: in regions of strong focusing, the signal variability (at the

higher frequencies) is generally lower than in other regions. This be-

havior is modeled in section 7.3.

The behavior of the signal level near the cusp as a function of time

is not significantly different from the behavior in the inter-caustic

zone but there are some noteable differences in the shadow zone. The

signal-level time histories for points 2 and 5 in the shadow region are

shown in Figures 29 and 30, respectively. The progression in relative

gain with frequency is not as smooth as in the inter-caustic zone but

this can also be seen in the unperturbed spectra. As before, the higher

frequencies have greater level changes and the greatest changes seen in

the 20Hz curve in Figure 30 are accompanied by a marked asymmetry. This

will be considered in more detail later but, for now, it is enough to

say that this is an indication of alternately constructive and destruc-

tive interference between two nearly equal components.



107

kk 0

0

I -- - - - -*- - - - - - - - - - - -

0.0 20.0 40.0 60.0 80.0 100.0

TIME (SEC)
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7.1.2 Normalized fluctuation magnitude

In order to compare the fluctuations at different receiver locations

and frequencies, the normalized fluctuation magnitude V given by Equa-

tion (3.12) will be used. This quantity is actually the standard devia-

tion of the received amplitude divided by the average received ampli-

tude. The fluctuation magnitude is a convenient quantity because it is

a measure of signal variability that is independent of the mean signal

level. Also, if the signal is determined by the interference of many

components of random amplitude and phase, V approaches an upper limit of

0.52 (Skudrzyk, 1957). This is the saturation limit. (If, however, the

signal results from interference of only two components, the limiting

value of V can be somewhat less. This will be demonstrated in section

7.3.)

The values for fluctuation magnitude for receivers in all three of

the observation areas and at 2, 5, 10 and 20Hz are shown in Figure 31.

While the 20Hz values are consistently higher than all other values,

there is no other definite trend with respect to frequency. None of the

values exceed the saturation limit of 0.52 although the 20Hz curves ap-

proach this value. As we will see in the next section, the 20Hz compo-

nent of the signal is just beyond saturation at the ranges considered

here.



112

oO ,1 I I O

001101 _ _ _0

• '-_--1:'-

i K: ... -... E . 0

................... ..................... .. "

CU

E

!.. ...._....

001 1KOQI 01Q

so a

I :IO

..... ...

001 o0 T1 z Tof
0(.1 V ov-j-q



113

7.2 Mode Analysis of Fluctuations

From Figure 31 it is clear that the normalized fluctuation magnitude

does not follow a simple power law in range as is predicted by the homIo-

geneous, isotropic scattering model. The field in this region is a com-

plicated combination of coherent components and any attempt to analyze

the nature of fluctuations must account for this structure. The analy-

sis to follow is based on normal-mode theory and, in this context, the

following points are important:

1. the degree of influence of the perturbations on a given mode;

2. the relative contribution of that mode to the received field (or,

in other words, the degree to which that mode is excited);

3. the structure of the field at a particular receiver; and,

4. the influence of the range distribution of the perturbations.

The first three points can easily be described by mode theory but the

fourth is more difficult unless the modes are allowed to couple, in

which case the analysis becomes more time-consuming than the complete

finite-difference simulation. This defeats the purpose of the modal

analysis, which is to provide a simple model for the fluctuations with-

out solving the complete field problem. Consequently, mode coupling

will be neglected. In spite of this omission, a fairly good estimate of

the fluctuation magnitude can be made and some of the important fluctua-

tion mechanisms can be identified.
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7.2.1 Equivalent fluctuation magnitude

By using the theory developed in section 3.2.3, we can estimate the

eigenvalue shift introduced by some perturbation in sound speed. To do

this, we must first fit the perturbation function given, in this case,

by Equation (5.9) with functions that allow evaluation of the eigenvalue

shift expression, Equation (3.29).

There is, of course, no point in resolving the perturbation profile

in much finer detail than a wavelength at the highest frequency of in-

terest. Surprisingly good results are obtained by fitting Equation

(5.9) with only two segments: one segment linear in altitude above an-

other constant segment. By means of Equation (3.34), these segments can

be written as

sc/c 3  15 [1 - (z - 58)/42]/338' , (7.1)

for z between 58m and lOOm, and

gclc 3  15/338 3 (7.2)

for z between Om and 58m. Otherwise, the sound-speed perturbation is

zero.

By using these expressions in Equation (3.29), we can calculate the

maximum positive and negative eigenvalue shifts. These shifted eigenva-

lues are then used in the exponent of the mode-sum Equation (2.8) to



compute the upper and lower limits for the fluctuation pressure ampli-

tude. These two values and the unperturbed pressure amplitude are used

to compute V by means of Equation (3.12). Since the amplitude fluctua-

tions are usually roughly sinusoidal, this over-estimates V so the val-

ues are corrected by assuming that the extreme values of pressure ampli-

tude are the upper and lower peaks of a sinusoidal curve.

The results of these calculations for 5 and 20Hz are shown in Figure

32. The solid lines reproduce the finite-difference calculations, while

the dashed lines give the calculations by eigenvalue shift. The results

.at 2 and 1OHz are generally better in the shadow region and worse in the

inter-caustic zone.

There are three obvious flaws in the eigenvalue shift calculation:

First, there is no attempt to consider the actual range distribution of

the perturbations. This does not seem to be a very serious problem

since the correspondence between the eigenvalue shift calculation and

the finite-difference calculation is quite good over the entire inter-

caustic zone. ,.

Second, because the shadow region has significant interference struc-

ture, the actual location of peaks and nulls can be sensitive to small

changes in the profile or boundary conditions. Recall that the normal-

mode model uses an extended sound-speed profile instead of explicit

boundary conditions; hence, the structure in the shadow zone is repro-

duced accurately in form but not necessarily in precise position. As a

result, a point for which the finite-difference model predicts an inter-

ference peak may, according to the normal-mode model, be near a null.

This displacement in structural details can be seen by comparing the
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20Hz values of the finite-difference spectra in Figure 21 with the nor-

mal-mode field plot in Figure 19. This is far more likely to be a prob-

lem at the higher frequencies and we do see considerable disagreement in

curve shape at 20Hz in Figure 32 for the shadow region points. The

curve shape at 5Hz in the shadow region is reproduced accurately but

with a shift in level. The cause for this is not clear but it probably

is not related to the structure problem at 20Hz. The 2 and 10Hz curves

(not shown) in the inter-caustic zone also reproduce the required shape

accurately but with a significant level shift.

The final problem with the eigenvalue shift calculation results from

the assumption that the maximum eigenvalue shift will produce the maxi-

mum level fluctuation. This is reasonable only below saturation. Above

some frequency (or beyond some range), the mode-sum pattern will be dis-

turbed so much that the magnitude of the sum will appear to vary random-

ly rather than continue to increase or decrease. As we will see short-

ly, the points considered here do show saturation at 20}{z and the

eigenvalue shift calculations could be affected by being too low. The

disagreement in the vicinity of the cusp is more likely a result of the

proximity of the boundary since the boundary is modeled differently by

each technique.

7.2.2 Modal analysis

We now have two methods for calculating the fluctuation magnitude but

neither one gives much physical insight into the fluctuation process.

For this, we must examine the components of the mode sum in the context

of the first three points listed at the beginning of section 7.2, name-
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ly: the perturbation-induced change in a given mode; that mode's rela-

tive contribution to the sum; and the overall field structure.

By computing the eigenvalue shift, we have already found the change

in the individual modes. Before examining this more closely, consider

another approach to finding the degree of influence of the perturbations

on the modes: expand the perturbation function ;c/c3 as a sum of the

unperturbed eigenfunctions. The series coefficient of any eigenfunction

is then the relative excitation of that eigenfunction by the perturba-

tion function. Since the eigenfunctions are orthogonal, the coeffi-

cients for the series expansion are easily computed and the result, to a

constant factor, is identical to Equation (3.29), the equation for the

eigenvalue shift. (We have also used Equation (3.34), valid for small

perturbations.) Therefore, the series coefficients are simply the ei-

genvalue shifts.

Now, the difference between the eigenvalues before and after pertur-

bation does not directly indicate the change in the appropriate term of

the mode sum. Since we are considering only the phase changes in the

mode sum to be important, we would like to know the difference between

the old phase and the perturbed phase. This depends not only on the ei-

genvalue shift but also on the horizontal range. Furthermore, this

phase difference can be greater than a full cycle but we are only inter-

ested in the net change in the complex term in the mode sum. Conse-

quently, let us define a perturbation weight H such that

H sin[(r, y ).x/2] (7.3)
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When H is zero, the eigenvalue shift is such that there is no net change

in the mode phase; when H is unity, the phase has shifted by 180 de-

grees. In other words, the larger H is for a given mode, the more that

mode is changed by the perturbations.

A sample calculation of this perturbation weight is shown in Figure

33 for points I and 5 in the inter-caustic zone at 5Hz. The results for

a similar calculation at 20Hz are shown in Figure 34. For the particular

shape of perturbation function used in this study, the lowest mode is

always the most affected mode, although the phase change may be greater

than 180 degrees, in which case the perturbation weight drops below uni-

ty. This is the case for the solid curve in Figure 34. If the frequen-

cy is high enough (or the range large enough), the behavior of H for the

lower modes can appear to be quite erratic since the total phase differ-

ence can be several complete cycles. This is illustrated by Figure 35

in which the calculation of the previous figures is repeated at 50Hz.

Here, the first six modes show large phase changes over the range inter-

val from point 1 to point 5.

By scanning Figures 33 through 35, we can see two distinct kinds of

perturbation weight changes with range. The first kind of change is

seen in the low-order modes, which show the most change with perturba-

tion at any given range and also show the most change as a function of

range. (This range dependence is only clear at the higher frequencies.)

The second kind of change is the relatively small but consistent change

between points 1 and 5 (i.e., between the solid and the dashed curves)

for the modes beyond the low-order group. This change increases wiih

frequency and slowly decreases with mode number. Since the phase change
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is relatively constant with mode number, the part of the mode sum corre-

sponding to higher order modes retains its shape and rotates as a whole

by that small phase change.

At the lower frequencies, the perturbations affect only the low-order

modes to any significant degree. If these modes are important to the

sum (we will see later how to determine this), then the fluctuations may

be large. At the higher frequencies, the perturbation effects on the

low-order modes increase until saturation is reached. The onset of sat-

uration is indicated when the phase shift of the most-affected mode goes

beyond 180 degrees. From Figure 34 and 35, we can see that the fluctua-

tions are just saturated at 20H{z and well into the saturation region at

50Hz.

Now that we have seen how the perturbations affect individual modes,

we will consider how the individual mode changes influence the total

field through the mode sum. Not all modes contribute equally to the

field; their contribution depends on how strongly they are excited and

this, in turn, depends on the location of the source and receiver with

respect to the nodes or antinodes of the mode eigenfunctions. If we

call the amplitude of any one mode in the mode sum given by Equation

(2.8) its excitation and plot this excitation as a function of mode num-

ber, we obtain a curve like that in Figure 36. Since, for uncoupled

modes, the excitation is not a function of range, only of source and re-

ceiver altitude, this one curve applies to all of the inter-caustic zone

points at 5Hz. The same calculation at 2011z is shown in Figure 37. We

can see that, at both frequencies, the perturbation changes of the low-

order modes will be important since the low-order modes are the most

strongly excited.
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The results in the shadow region are somewhat different. Figure 38

shows that the first few modes for a point near the focus (point 2) are

strongly excited while deeper in the shadow (at point 5), the higher

modes are stronger. This feature is consistent at all frequencies and,

therefore, allows us to determine how much of an influence changes in

the low-order modes have on the fluctuation magnitude. Referring

back to Figure 32, we can see that, at 5Hz in the shadow region (and,

also, for the 10Hz curve not shown), the trend is toward lower fluctua-

tion magnitude deeper in the shadow. Hence, here, the varying excita-

tion of the low-order modes is controlling the fluctuation magnitude.

At 20Hz, there is no similar trend.

Finally, the degree of signal fluctuation also depends on the struc-

ture of the field. As demonstrated by the mode-sum curves in Chapter

VI, the structure in the shadow region is substantially different from

that in the inter-caustic zone. In between the caustics, where the

field is strong, the modes add in a very orderly manner (for example,

see Figure 24, the lower left plot). Here, we would expect the fluctua-

tions to be more predictable and, in fact, the agreement between the fi-

nite-difference calculation of V and the eigenvalue shift calculation is

quite good in this region.

7.3 Two-comoonent Model

Particularly in the region of strong enhancement between the caus-

tics, we have been able to successfully predict the fluctuation magni-

tude by computing the eigenvalue shift introduced by sound-speed pertur-

bations and then summing the phase-shifted modes. While this method
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avoids solving the range-dependent problem directly, its principal value

rests in the insight gained into the fluctuation process. In this sec-

tion, we will construct a very simple fluctuation model based on just

one of the properties observed in the eigenvalue-shift work.

In Chapter V, we saw that the field structure in the shadow region

comprised two or three dominant components, which produced a rather sim-

ple interference pattern. Furthermore, the fluctuating signal level at

one of the points in the shadow (see Figure 30, 20Hz curve) appeared to

be the result of two nearly equal components with variable relative

phase. Finally, the eigenvalue shift always affected a few of the low-

est order modes significantly more than the other modes (see Figures 33

and 34). These observations suggest that a model consisting of the vec-

tor sum of two, unequal amplitude components may be able to describe the

signal level fluctuations if the relative phase of these components is

varied according to the eigenvalue shift calculations.

We have, then, a sum of two vectors of magnitude P, and cP with

relative phase /. The resultant magnitude is

P = PO 1 i + o + 2d'cos (7.4)

and the average resultant for P varying over some range from g' to or

is

-P d (7.5)
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or

P = Po 2(1 + c) [E( ,/2,r) - E(O,/2,r)/C'" , (7.6)

where E is the incomplete elliptic integral of the second kind and

r = 2v /( + c) (7.7)

The resulting fluctuation magnitude can be computed by integrating to

find the mean-square amplitude difference (see Equation (3.12))

I2

V 2  - 1 +
(7.8)

[1 + cr1 + 2d(sinq - sin,)/( 2 -

7.3.1 Predictions at saturation

The maximum fluctuation range results when P' varies from - 7- to +17'

(or more, of course); this is the saturation limit for this model. Be-

cause of symmetry, we can calculate the saturation limit by setting 9,

equal to zero and 0 equal to /. Abramowitz and Stegun (1965) give a

convenient polynomial approximation for E(Ir/2,r) so that P may be cal-
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culated easily. If the two components are equal (that is, e = 1), then

the fluctuation magnitude V is equal to 0.48. This is an absolute limit

on V for this simple model and it agrees quite well with the usual satu-

ration limit of 0.52 (Skudrzyk,1957). Figure 39 gives the relationship

between V and o'. As we can see, if the two dominant field components

are unequal in amplitude, the fluctuation magnitude can be well below

0.52 even at saturation.

As a check of the validity of the two-component model, let us take

the minimum and maximum amplitudes of the fluctuation time history

curves for 20Hz and compute the fluctuation magnitude using Equation

(7.8). If we take, in particular, the curves corresponding to points 2

and 5 in the shadow region (Figures 29 and 30), we find that the minimum

and maximum levels at point 2 are -4.1dB and -l.OdB respectively while

those at point 5 are -25.9dB and -8.9dB. Consequently, o- is 0.18 for

point 2 and 0.75 for point 5. The corresponding fluctuation magnitudes

computed by Equation (7.8) are then 0.12 and 0.43, respectively. These

values are essentially identical to those computed by the finite-differ-

ence model and shown in Figure 32. While this demonstrates the consis-

tency of the two-component method, the fluctuation time history minima

and maxima are not easy to calculate and this is not a practical way to

compute V.

To apply the two-component model to the problem considered here, a

practical rule for selecting the two components must be established.

The primary indicator for separating the two components is the relative

shift in eigenvalue of the modes as given by the perturbation weight

function. (See, for example, Figure 34.) For the particular perturba-
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tion function used in this analysis, the shift is always greatest for

the low-order modes. The eigenvalues of the modes near this peak in the

perturbation weight curve have approximately the same shift; these

shifts are correlated with respect to the perturbations. This can be

seen in a qualitative way by examining the three lowest modes in Figure

24. Although they rotate in the plane from diagram to diagram, they ro-

tate as a group with no significant shift relative to one another.

At both 5 and 20Hz, the first component would consist of several of

the lowest modes; however, not all of these modes are significant. The

mode amplitude or excitation curve (see Figure 37) drops rapidly beyond

the first mode so only a few modes will contribute to the first compo-

nent. If the perturbation weight curve and the mode excitation curve

are multiplied together, the mode number for which this composite curve

drops to I/e times the value at the first mode can be used as a dividing

point between the two components. At 5Hz, there are two modes below

this limit while, at 20Hz, there is only one.

At 20Hz, we will identify the lowest mode as one component and the

sum of the rest of the modes as the second component. From the ratio of

the magnitudes, we can compute a and, therefore, V since, at 20Hz, the

fluctuations have saturated. The results are shown in Figure 40: the

dashed lines give the fluctuation magnitude calculaued by eigenvalue

shift and the circles give those values calculated by the two-component

model. Considering the coarse nature of the two-component model, the

agreement is good. Notice that we only had to compute the eigenvalue

shift for the first several modes to determine whether or not saturation

was taking place. Hence, the two-component calculation is easy to per-

form.
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7.3.2 Predictions below saturation

At 5Hz, we will take the sum of the lowest two modes for the first

component. (The following calculations are not very sensitive to the

number of modes selected for the first component; this is a good feature

of this model.) Since the fluctuations are not saturated at 5Hz, we

also need the unperturbed relative phase between the components and an

estimate of the phase change with perturbation. To compute this latter

quantity, we can take the perturbation weight from Figure 33 and convert

it to phase change by Equation (7.3). We can compute the unperturbed

relative phase from the magnitude and phase of the sum of the first two

modes and the magnitude and phase of the entire mode sum from the nor-

mal-mode solution. The elliptic integrals in Equation (7.6) have no

convergence problems, so they can be calculated by simple numerical in-

tegration. Figure 41 gives the results of this calculation (circles) as

compared to the eigenvalue shift results (dashed lines). As at 2011z,

the agreement is good.

From these results, it is clear that the two-component model is of

some value in predicting the fluctuation magnitude for focused, strongly

diffractive fields with range-dependent perturbations. Using the per-

turbation weight calculations (basically an expansion of the altitude

variation of the perturbations as a series of the mode eigenfunctions),

we can find the expected phase change between components and from an un-

perturbed normal-mode solution, we can compute the relative magnitudes

and starting phases of the two components.

While this procedure is simple, it is essentially restricted to fluc-

tuations below saturation or just at saturation. For strongly saturated



135

00 __ _ __ __ 7 E 4)E
Ea 00
0E

0 C)

W 0

U W

i..T C) n

00 1 I 01
M.-IUXOM .1 olv~jj.TI



136

fields, there will be more that two significant field components. A

multi-component model could, of course, be constructed, but the compli-

cations introduced would limit its utility. Also, remember that the

range-dependence of the perturbations is only included in a very crude

manner; this weakness probably accounts for much of the discrepancy be-

tween the finite-difference results and the eigenvalue shift results in

Figure 32.

7.4 Correspondence to Fluctuation Parameters

Before leaving the analysis of signal fluctuations, let us briefly

consider the implications of the A -Iparameters. As we have dis-

cussed, these parameters may not be useful for describing the fluctua-

tions in detail because the parameters are based on simple ray theory

and, at the frequencies of interest here, wave effects predominate. We

can, at least, compare these parameters to the characteristics of the

fluctuations predicted by the wave theory models.

For the model of the planetary boundary layer used here, a simple ap-

proximate form for _ will suffice. The perturbation component //1 is

given by Equations (5.5), (5.8) and (3.15) as

14-4(x,Zt) U(z) Cos[ff(x + vmt)/ ] (7.9)

Since the frequencies of interest correspond to long wavelength propaga-

tion that will sample a very broad swath rather than a narrow ray, we

can approximate the ray path as a horizontal line and use vertically av-

eraged properties. In this way, Equation (3.14) reduces to
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= 2 z f u(z 0 )/c (7.10)

If we use an average of Im/s for u(z.) (based on a peak value of 3m/s),
A

70m for z and 350m/s for c, then

= 0.4 f (7.11)

The calculation of A is based on Equation (3.16) and the caustic ex-

tension, Equation (3.19). As such, these A values differ considerably

from values calculated from the usual A definition. Figure 42 shows

the difference between these two methods of A calculation. In each

case, the parameters are calculated in range from one caustic to the

other (through the inter-caustic zone) and at three different frequen-

cies. At 1 Hz the results are radically different. The standard calcu-

lation shows peaks at the caustics (at all frequencies, in fact) whereas

the extended calculation peaks near the middle. At 50Hz the left caus-

tic is treated differently while the results are similar on the right

(the stronger caustic). Finally, at 1kHz, the comparison is quite good.

Of course, as the frequency increases, ray theory becomes more accurate.

In Figure 43, the range of A-- parameters encountered in this in-

vestigation of the zone between two caustics is shown. Based on the as-

sumption that ray acoustics is valid for the unperturbed medium, the

various regions of z1-i-space represent different types of induced sig-
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nal fluctuation. The area marked "unsaturated" indicates that the re-

ceived signal is dominated by phase fluctuations rather than amplitude

fluctuations and that an increase in perturbation level will increase

the signal variability. In this region and below /= 1, the ray path

is well represented by a single, displaced path (again, if the propaga-

tion in general can be adequately described by ray theory). Above A =

1, the effects are primarily diffractive: a single displaced path could

not be identified.

The region labelled "partially saturated" represents ray displace-

ments less than the vertical correlation length of the perturbations.

Hence, there is partially correlated multipath. In the "saturated" re-

gion, the signal fluctuation level should be roughly constant regardless

of the amplitude of the perturbations. The multiple paths are complete-

ly uncorrelated.

Overlaid on this diagram is a shaded area that represents the range

of A and Y that are encountered in the illuminated region between the

ascending and connecting limbs of the caustic (see Figure 15). Accord-

ing to the 2-1theory, then, the range of parameters for this investi-

gation encompasses the transition from unsaturated diffractive fluctua-

tion through partial saturation to full saturation. Therefore, we can

expect to see significant phase fluctuations at low frequency (2 to 5Hz)

and significant amplitude fluctuations at high frequency (10 to 25}{z).

This is qualitatively consistent with the behavior of the fluctuations

seen in the previous sections but the 20Hz fluctuations are only just

saturated whereas the X-{ calculation predicts saturation above 5Hz.
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These predictions based on A-ftheory should be tempered by the

fact that ray theory is assumed to be adequate for describing the unper-

turbed propagation. At the frequencies of interest here, this assump-

tion is probably a poor one. For example, the calculated values of the

displacement distance R for the perturbed ray path are often so large

that the path type would change completely before destructive intefer-

ence could take place: the calculation of R based on small vertical

displacements can be in considerable error.



Chapter VIII

CONCLUSIONS

Many of the characteristics of a convergent and strongly diffractive

field have been identified in the preceding analysis. Clearly, when the

wavelength is of the same order as the characteristic dimensions of the

region of convergence, the field must be treated as a wave field. Con-

sequently, a number of wave theory techniques have been used to analyze

both the steady-state and the fluctuating nature of this field. In this

final chapter, the conclusions are summarized in three groups: one cov-

ering the actual calculation of strongly diffractive fields, another

covering the structure of the unperturbed wave field, and a third that

covers the perturbation-induced fluctuations.

Several methods are used to calculate the pressure distribution in

the focused field. Except for some modifications to expedite the mode

eigenvalue searc i, the normal-mode solution is a standard technique.

Two other methods are introduced in this work. These are: a finite-dif-

ference solution of the time-dependent wave equation for acoustics and a

second-order asymptotic correction to ray theory. Concerning all of the

methods used, the following points are significant:

1. The finite-difference technique is useful particularly for range-

dependent problems; however, it is limited to low frequency by

cost and computer storage requirements. Design criteria are out-

lined in section 5.4. As formulated here, the technique has no

- 142 -
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numerical dissipation and limited, isotropic dispersion error.

Also, it is developed for two-dimensional Cartesian coordinates

although there is no inherent difficulty in modifying the tech-

nique for axisymmetric cylindrical coordinates.

2. The second-order asymptotic correction to ray theory given by

Equation (2.31) properly predicts the field structure in the vi-

cinity of two closely spaced caustics at the upper frequency lim-

it of this strong diffraction regime. The procedure could be ex-

tended to any analysis in which an integral representation has

three saddle points in close proximity. (The standard caustic

correction applies to two neighboring saddle points, each saddle

point corresponding to a classical ray.)

3. Different components of the field can be identified by examining

the mode sum while, at the frequencies considered here, the ray

picture is of very limited value even with simple asymptotic

(caustic) correction.

Ray theory normally gives a reasonable representation, at least qual-

itatively, of the sound field from a point source in an inhomogeneous

medium. In this study, however, the wavelength is of the same order as

the separation of the ray-theory caustics and so diffractive interfer-

ence plays a controlling role. Over this regime of strong diffraction,

these conclusions are relevant:

1. Shadow zones have definite interference structure. While no rays

are predicted at all by ray theory, there actually are contribu-

tions from the diffractive spreading of several classical rays
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according to the spreading factor in Equation (2.21) and a con-

tribution from the evanescent "tails" of the lowest-order modes.

2. Multiple caustics blend into a smooth, featureless enhancement.

In spite of the classical prediction of three rays in the interi-

or of this region, there is only one distinct wave component be-

sides the weak contribution from the direct path. The point at

which the multiple caustic structure will start to be observed

can be predicted by the results of the second-order asymptotic

correction through Equation (2.33) for the X parameter approxi-

mately equal to -4.

3. The structure of the overall field is determined by the interfer-

ence of distinct mode groups and these groups retain their iden-

tity over some finite spatial scale. It is the proper identifi-

cation of these groups that leads to correct interpretation of

the field as well as providing a basis for understanding signal

fluctuations. These structural details were discussed at length

in Chapter VI.

The perturbations introduced into the planetary boundary layer model

do not lend themselves to asymptotic treatment for two reasons: first,

there is significant variation in the perturbation function over a wave-

length; and, second, the perturbation strength includes the critical

region of transition into saturation. Consequently, not only must the

deterministic field be analyzed with due regard to wave phenomena; the

diffraction effects introduced by the perturbations must also be con-

sidered. Regarding the perturbation-induced signal fluctuations, the

following conclusions can be drawn:
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1. The response of the field to perturbations is related to two fea-

tures of the unperturbed field: the number of dominant compo-

nents or mode groups (for example, one major group and the direct

path in the inter-caustic zone), and the relative excitation of

these groups as given by the mode amplitudes.

2. The specific influence of a given perturbation function is relat-

ed to that function's Fourier expansion as a series of mode ei-

genfunctions. The expansion coefficients given by Equation

(3.25) determine the allowable phase shift of the mode groups.

3. A simple, two-component model of the fluctuation mechanism (see

Equation (7.8)) produces as accurate an estimate of the fluctua-

tion magnitude below saturation as a complete perturbated-mode

solution. One component is identified by the peak in the pertur-

bation weight curve while the other comprises the remainder of

the mode sum. The magnitude of the components can be calculated

from the appropriate partial sum of the unperturbed modes and the

relative phase shift is given by the peak value of the perturba-

tion weight function.

4. The onset of saturation is determined by the frequency (or range)

at which the perturbation weight function becomes unity for some

mode. However, at the onset, the fluctuation magnitude can be

well below the usual limit of 0.52 if the components are unequal

in magnitude. Beyond saturation, the two-component model loses

validity.

5. The signal amplitudes in the shadow zone are subject to severe

fading because of the multi-component structure there. Also
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there are strong variations in the field levels with position.

(See Chapter VI.)

6. The presence of a single dominant mode group in the strong en-

hancement region between caustics means that, at the higher fre-

quencies, the fluctuation magnitude is lower than near the edges

or outside of that region.

7. Any range dependence in the fluctuation magnitude is masked by

the effects of the rather rapid spatial changes in field struc-

ture.

While a number of important results concerning strong diffraction

have been obtained, many areas for additional work have become apparent.

For example, this investigation has examined only amplitude fluctua-

tions. It would be useful to study phase fluctuation characteristics

below saturation; the two-component model is well suited to this. Also,

there is significant interest in the inversion of acoustic data to de-

termine physical properties of the medium. The effects of both ampli-

tude and phase fluctuations on these inversion processes should be exam-

ined.

Several improvements in and extensions of the solution techniques are

suggested. The method for handling the range variation in perturbations

is rather crude; this should be improved, if possible. Also, for fre-

quencies somewhat higher than those considered here, a useful ray model

could be constructed using the second-order asymptotic correction so

that multiple caustics as well as cusps in caustics could be treated.

Finally, since the utility of the finite-difference model in two-dimen-
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sional Cartesian coordinates has been demonstrated, it should be refor-

mulated in axially symmetric cylindrical coordinates.

Hopefully, this investigation will provide the ground work for addi-

tional research into the mechanisms and effects of strong diffraction.
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Appendix A

TRANSPARENT-BOUNDARY CONDITION

Reynolds (1978) gives a finite-difference approximation for a nonre-

flecting boundary (i.e., completely transmitting boundary) by factoring

the differential operator of the wave equation and then searching for a

weighted-difference scheme that minimizes the reflection coefficient

over some range of incident angle. The condition at the lower boundary

(y = 0) is given by

-, -pI (A.l)

P = (1 - q)(p p,) + (I + q)pq

At y Mh (the upper boundary) the condition is

0 -/ 0 -,

= (1 - q)(p - p ) + (1 + q) qp1  (A.2)

The notation here corresponds to that of section 3.1.3.
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Appendix B

GRADIENT SCALING

By compressing the horizontal scale of the finite-difference grid

while maintaining the vertical scale, the efficiency of the numerical

solution can be improved. The horizontal scale change is given by the

change in range between a ray that vertexes at some depth before scaling

and the ray that vertexes at the same depth after scaling.

For a constant sound-speed gradient g, the range to a vertex is

x = c - C/g , (B.1)

where c. is the vertex speed of the ray. If the sound-speed profile is

adjusted so that

C1  = c o  + 0((c, - co ) (B.2)

then the gradient is scaled by

= g , (B.3)

and
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= c o + K(CV( - co)] 2  - c0  /~g (B.4)

For c. approximately equal to c, as would be the case in the atmosphere

or the ocean for low angle rays

x x/v"O-- (B.5)

Thus, the desired range scale factor is computed from Equation (B.5) and

applied to the profile according to Equation (B.2).

The perturbations must also be scaled so as to retain the same root-

mean-square phase change over equivalent distances. This phase change

is directly proportional to range so the perturbation amplitude must be

multiplied by v'.




